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Abstract 
 

 
ANTINOCICEPTIVE EFFECTS OF MONOAMINE REUPTAKE INHIBITORS IN ASSAYS OF 

PAIN-STIMULATED AND PAIN-DEPRESSED BEHAVIOR 
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A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at 
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Noxious stimuli can produce pain-related stimulation of some behaviors (e.g. withdrawal 

responses) and depression of other behaviors (e.g. feeding, locomotion, responding maintained by many 

types of positive reinforcement). Monoamine reuptake inhibitors are used clinically to treat depression 

and to manage some types of pain. This study examined the antinociceptive properties of a variety of 

monoamine reuptake inhibitors selective for SERT, NET and DAT in complementary assays of acute 

pain-stimulated and pain-depressed behaviors. Intraperitoneal injection of dilute lactic acid (1.8% in a 

volume of 1ml/kg) was used as a noxious stimulus to stimulate a stretching response and to depress 

intracranial self-stimulation (ICSS) of the median forebrain bundle. All eight monoamine reuptake 

inhibitors produced an antinociception-like blockade of acid-stimulated stretching, but only compounds 

with prominent DA reuptake inhibition (SDRIs RTI-113 and bupropion and the TRI RTI-112) were able 

to block acid-depressed ICSS, although these effects were produced only at doses that also produced an 

abuse-related facilitation of control ICSS. Selective or mixed-action inhibitors of 5-HT and NE failed to 

block acid-induced depression of ICSS. In a separate group of rats, citalopram was also tested using a 

repeated dosing regimen (10 mg/kg x 3 doses) shown previously to produce antidepressant effects in a 

forced-swim test in rats.  As with acute administration, repeated citalopram decreased acid-stimulated 



www.manaraa.com

	  

	  v	  
	  	  

stretching but failed to block acid-induced depression of ICSS. Taken together, these results suggest that 

SSRIs, SNRIs and S+NRIs produce relatively non-selective depression of all behavior rather than a 

selective blockade of sensory sensitivity to noxious stimuli. Conversely, dopamine reuptake may be able 

to block sensory detection of noxious stimuli. Additionally, these results suggest that assays of pain-

depressed behavior can provide new insights on analgesia-related effects of monoamine reuptake 

inhibitors. 
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Introduction 

 Currently, more than 1.5 billion people worldwide suffer from chronic pain of varying degrees 

(Global Industry Analysts, Inc., 2011), and it is estimated that approximately one-third of Americans will 

suffer from chronic pain during their lifetime (Harstall et al., 2003). Pain is expensive to treat. The 

National Institutes of Health has reported that the annual direct costs associated with chronic pain in the 

United States are over $100 billion, while the indirect costs of pain (absenteeism, unemployment, and lost 

workplace productivity) are estimated to be $60 billion. For many, persistent pain symptoms are also 

associated with depression. Studies have reported that the risk of depression increases as a function of 

worsening pain symptoms and severity (Dworkin et al., 1991, Magni et al., 1993). The combination of 

pain and depression is associated with poorer quality of life and decreased work function. Research has 

demonstrated that pain and depression share similar neurochemical etiologies, biological pathways and 

neurotransmitters, and may respond to similar treatments. Several animal and human studies have 

concluded that monoamine reuptake inhibitors offer a new and promising class of drugs for the treatment 

of pain and depressed behaviors. These drugs have the net effect of increasing the neurotransmission of 

serotonin, norepinephrine and dopamine, which are critical for modulating pain transmission.  The 

research associated with this thesis is concerned with preclinical studies to examine effects of monoamine 

reuptake inhibitors in assays of pain-related behavioral depression. 

 

Definition and Neurobiology of Pain  

 Pain is defined as an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage (IASP, 2011). This definition implies that 

pain is a subjective experience, involving more than just physical injury. As such, pain is commonly 

evaluated clinically in humans by verbal reports. However, pain in humans is also associated with 

nonverbal changes in behavior, and verbal reports are obviously not suitable for assessment of 

experimental or clinical pain in animals. In order to evaluate pain and analgesia pre-clinically, researchers 

rely on two general categories of non-verbal behavioral manifestations of pain: (1) pain-stimulated 
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behaviors and (2) pain-depressed behaviors (Negus et al., 2006; Stevenson et al., 2006). Pain-stimulated 

behaviors are behaviors that increase in rate, frequency, or intensity in response to the delivery of a 

painful stimulus (e.g. withdrawal reflexes). In contrast, pain-depressed behaviors are behaviors that 

decrease in rate, frequency, or intensity in response to a noxious stimulus (e.g. pain-depressed feeding or 

locomotion). Using these endpoints, pain as well as analgesia can be inferred from behavior in animals. 

 Pain-related changes in behavior result from a series of signaling events occurring within the 

peripheral and central nervous systems (Argoff et al., 2011) (Figure 1). Peripheral terminals of 

nociceptors detect the presence of a noxious stimulus. These nociceptors act as transducers, which convert 

chemical, mechanical or thermal energy at the site of the stimulus into electrical activity, which is then 

conducted to the dorsal horn of the spinal cord in the central nervous system. Here, the pain signal is 

transmitted from the primary afferent to secondary nociceptive neurons in the dorsal horn. Axons of the 

secondary nociceptive neuron ascend in the anterolateral white matter of the spinal cord and terminate in 

the thalamus. From there a tertiary nociceptive neuron ascends and terminates in the postcentral gyrus 

(primary somatosensory cortex, SI). This primary pain sensory system includes branches that target (a) 

other subcortical regions such as the parabrachial nucleus (PBN), which in turn projects to amygdala and 

to mesolimbic dopamine neurons in the ventral tegmental area to influence mood and motivation, and (b) 

other cortical regions such as second somatosensory cortex (SII), anterior cingulate cortex (ACC) and 

insular cortex (IC) (Price et al., 2000).  These cortical targets can also influence limbic regions such as 

amygdala and nucleus accumbens either directly or via their connections to the prefrontal cortex.  Taken 

together, this neural network provides a mechanism by which noxious stimuli can influence behavior and 

mood. 

 Pain can be categorized as acute nociceptive pain, inflammatory pain, and neuropathic pain. 

Acute nociceptive pain serves a vital and adaptive purpose. It serves to detect, localize and limit tissue 

damage. Acute pain evokes motor withdrawal reactions, which are protective responses that discontinue 

exposure to the noxious stimulus and terminate the pain. The pain is usually sequestered to the affected 

area, short in duration and resolved when the underlying problem is treated. Acute pain can result from 
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injury or sudden illness and can affect skin, subcutaneous tissues, bone, muscle, blood vessels, connective 

tissue, organs or the linings of the body cavities. Pain associated with surgery, athletic injury and 

occasional headache are all examples of acute pain. The sensation of acute pain begins with the detection 

of a noxious stimulus by specialized peripheral nociceptors. Most primary afferent nociceptors respond to 

a variety of noxious stimuli-extreme hot or cold temperatures, intense pressure (pinching, pinpricks, cuts), 

increased tissue acidity, or chemical agents released from cells that are damaged or responding to an 

infectious agent (Fields et al., 2007).  Information regarding the noxious stimulus is then transmitted to 

the central nervous system as described above. Inflammatory pain is a type of pain that involves the 

mechanism of sensitization of nociceptive pathways (Figure 2A). Under inflammatory pain conditions, 

inflammatory cytokines (e.g. TNFα and IL1β), small molecules (e.g. ATP, bradykinin, prostaglandins) 

and growth factors (e.g. NGF and BDNF) infiltrate the area of injury, bind to receptors expressed on 

sensory nerves and sensitize nociceptors. Sensitization leads to increased responsiveness of nociceptors to 

their normal input, and/or recruitment of responses to normally subthreshold inputs (IASP et al., 2011). 

Inflammatory mediators have diverse mechanisms and sites of action, including the activation and 

sensitization of nociceptive terminals; the regulation of primary nociceptive phenotype; and, in spinal 

cord, the pre-synaptic control of nociceptor transmitter release and the post-synaptic control of neuronal 

excitability (Meyer et al., 2006). Clinically, sensitization can be inferred indirectly from phenomena such 

as hyperalgesia or allodynia. Hyperalgesia is defined as increased pain from a stimulus that normally 

provokes pain, and allodynia is defined as pain due to a stimulus that does not normally provoke pain 

(IASP et al., 2011). Pain associated with rheumatoid arthritis, inflammatory bowel disease (IBS), and 

pelvic inflammatory disease (PID) are all examples of inflammatory pain states. Neuropathic pain 

sometimes resembles inflammatory pain because spontaneous pain and hyperalgesia are present at the site 

of injury. However, the underlying pathology is specifically in nerve tissue. Neuropathic pain is initiated 

or caused by a pathological lesion or dysfunction in peripheral or central neurons (IASP et al., 2011) 

(Figure 2B). After peripheral nerve injury, irregular regeneration may occur, resulting in unusual and 
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spontaneous sensitivity to chemical, thermal and mechanical stimuli (peripheral sensitization). As a result 

of ongoing spontaneous activity in the periphery, central neurons in the spinal cord (spinothalamic tract 

neurons) adjust and rewire, causing a heightened responsiveness to afferent impulses, including normally 

innocuous tactile stimuli (central sensitization). Central sensitization commonly leads to allodynia. A 

reduction in afferent fiber input decreases the activity of interneurons inhibiting nociceptive neurons and 

causes hypoactivity of descending inhibitory pain modulating systems. This type of pain is maladalptive 

because it can occur not only at sites far removed from the original injured area but also at degrees of 

severity that bear little relationship to the extent of injury. All neuropathic pain is chronic. A wide variety 

of pathological processes affecting peripheral nerves, sensory ganglia, spinal roots and CNS structures 

can induce neuropathic pain. These include trauma, vascular and metabolic disorders, bacterial and viral 

infection, inflammation, autoimmune attack, genetic abnormalities, neurotoxins, etc. (Meyer et al., 2006). 

Symptoms of neuropathic pain can range from numbness, paresthesias and tingling to shooting, burning, 

sharp, electric shock-like pain sensations. This is in contrast to most nociceptive pain that is commonly 

described as aching. Pain associated with multiple sclerosis, spinal cord injury, diabetic neuropathy, HIV-

related neuropathies, and cancer-related pain are all examples of neuropathic pain.  

 

Analgesic Drugs 

Any patient who experiences pain that impairs functional status or quality of life is a candidate 

for analgesic drug therapy. Today, opioids are some of the strongest analgesics available to treat pain 

(Yaksh et al., 2011). Opioid analgesics interact with peripheral and central opioid receptors to produce an 

overall decreased perception of pain. For acute nociceptive or inflammatory pain, it is routinely 

recommended that opioids be combined with other analgesic agents, such as nonsteroidal anti-

inflammatory drugs (NSAIDs) or acetaminophen in order to minimize the dose requirement of the opioid. 

According to the World Health Organization Analgesic Ladder (initially targeted for treatment of cancer 

pain), mild opioid treatment is indicated for persisting or increasing pain only after first-line treatment 

with non-opioids or anti-inflammatory agents has failed. In the presence of severe pain, stronger opioids 
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should be considered for treatment. In general, neuropathic conditions may be less efficaciously managed 

by opioids than pain secondary to tissue injury and inflammation (Yaksh et al., 2011). A number of 

clinical trials evaluating opioids for the treatment of neuropathic pain conditions have demonstrated that 

opioids partially relieve neuropathic pain symptoms (Watson, CPN et al., 1998, Raja SN et al., 2002, 

Harati Y et al., 1998, Gimbel JS et al., 2003, Watson CP et al., 2003). These studies also demonstrated 

that opioids are effective in treating certain qualities of neuropathic pain such as steady pain, paroxysmal 

pain and allodynic pain. In the case of neuropathic pain, other drug classes such as monoamine reuptake 

inhibitors may be useful in combination with the opiate, and may act synergistically in some pain states 

(Yaksh et al., 2011; see below). Despite their clinical efficacy, opioids carry a balance of benefits and 

burdens. Although the adverse side effects of opioids can limit their clinical utility, they are still 

prescribed for people in pain. Opioids have the potential to cause respiratory depression, constipation, 

dependence, tolerance and cognitive disturbances, so careful monitoring is required.  

NSAIDs represent an alternative class of effective analgesics. They are potent inhibitors of 

prostaglandin synthesis because they block cyclo-oxygenase (COX) enzymes that are necessary to 

produce prostaglandins. NSAIDs have four desirable pharmacological effects: anti-inflammatory, 

analgesic, antipyretic and anti-thrombotic. NSAIDs are effective in treating acute inflammation associated 

with postoperative pain (McQuay et al., 2007). There is also good evidence for the efficacy of oral 

NSAIDs in acute and chronic musculoskeletal pain (Mason 2004, Moore et al., 1998). Most NSAIDs are 

appropriate for short-term use in inflammatory arthritic conditions such as rheumatoid arthritis and are 

reported to relieve pain of headache, menstrual cramps, and other mild-to-moderate pain syndromes 

(Ferrell et al., 2009). They can also be used alone for mild-to-moderate pain or in combination with 

opioids for severe pain. They have the advantage of being non-habit forming; however, long-term use of 

NSAIDs can cause a number of adverse effects including gastrointestinal bleeding (Singh et al., 1998), 

renal failure (Henry et al., 1997), and congestive heart failure (Page et al., 2000). NSAIDs also exhibit a 

ceiling effect at which increasing the dose results in no further increase in analgesia. 
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Monoamine Reuptake Inhibitors 

As a result of the high incidence of pain and the critical need for analgesics without abuse 

liability and deleterious side effects, researchers have turned much attention to monoamine reuptake 

inhibitors as a treatment option. These compounds offer an attractive alternative to opioids for the 

treatment of pain, because they have a lower abuse potential, and more importantly, monoamine reuptake 

inhibitors have analgesic effects in chronic neuropathic pain states like fibromyalgia in which NSAID and 

opioids are not very effective (Perrot et al., 2008). Monoamine reuptake inhibitors are now considered an 

essential component of the therapeutic strategy for the treatment of many types of persistent pain. Further 

research is required to understand how and why different types of pain may respond differentially to a 

given monoamine reuptake inhibitor.   

 Monoamine reuptake inhibitors have a unique mechanism of action. Inside neurons, 

neurotransmitters like serotonin, norepinephrine and dopamine are synthesized and packaged into large 

dense-core vesicles. During an action potential, these vesicles fuse with the inner surface of the 

presynaptic terminal at the active zone, and through calcium influx and exocytotic mechanisms, 

neurotransmitters are released into the synaptic cleft. Once neurotransmitters enter the synaptic cleft, they 

are quickly removed by various mechanisms including diffusion and enzymatic degradation by catechol-

O-methyl transferase (COMT) and monoamine oxidase (MAO).  Monoamines are removed by reuptake 

through pre-synaptic membrane-embedded transporter proteins. Transporters rapidly clear 

neurotransmitter out of the synapse and back into the presynaptic terminal to terminate neurotransmission 

and replenish neurotransmitter stores. Membrane transporters are also the targets for monoamine reuptake 

inhibitors. Monoamine reuptake inhibitors bind to transporters and inhibit their activity, forcing increased 

levels of extracellular monoamines to accumulate, leading to enhanced monoaminergic neurotransmission 

at spinal and supraspinal levels. 

 There are multiple subtypes of monoamine reuptake inhibitors with different selectivities for the 

serotonin (SERT), norepinephrine (NET), and dopamine (DAT) transporters (see Table 1). These 

subtypes include selective serotonin reuptake inhibitors (SSRIs), selective norepinephrine reuptake 
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inhibitors (SNRIs), selective dopamine reuptake inhibitors (SDRIs), mixed-action norepinephrine-

serotonin reuptake inhibitors (S+NRI) [including the subclass of tricyclic antidepressants (TCAs) named 

after their chemical structure], and triple reuptake inhibitors (TRIs), which inhibit all three transporters.  

 Monoamine reuptake inhibitors have been used for decades to treat depression (López-Muñoz et 

al 2009, Tran et al., 2003, Baldessarini et al., 2005), and more recently, they have emerged as useful 

medications for the treatment of some types of pain (Sawnyok et al., 2001). Monoaminergic projections 

largely originate in brainstem and midbrain nuclei, and they project throughout the spinal cord and brain 

to integrate with ascending pain signals at the spinal and supraspinal level. Monoaminergic systems play 

an important role in modulating the behavioral expression of inflammatory and neuropathic pain (Ren and 

Dubnerer 2002) and are targets for pharmacologic management of these conditions. Supraspinal 

monoaminergic projections are thought to modulate the motivational-affective dimension of pain (Lima 

and Almeida et al., 2002).  

Serotonergic Projections (Figure 3A).  Serotonergic cell bodies are located along the midline of 

the brain stem, in the raphe nuclei. Axons from the serotonergic cell bodies from the Raphe Nuclei in the 

pons and midbrain (B5-B9 groups) ascend to the forebrain where they play an important role in regulating 

the responsiveness of cortical neurons involved in mood. Descending serotonergic projections originating 

in the caudal medulla (B1-B3 groups) travel to the motor and autonomic systems in the spinal cord, while 

projections originating in the rostral ventral medulla (B4 groups, RVM) project to the dorsal horn to 

modulate nociception. 

Noradrenergic Projections (Figure 3B).  Noradrenergic cell bodies are located in two columns 

(dorsal and ventral) in the medulla. Noradrenergic cell groups located in the locus coeruleus (A6) provide 

important ascending projections to the cerebral cortex and cerebellum. The locus coeruleus is known to 

play an important role in maintaining responsiveness to unexpected environmental stimuli, a function that 

is integral in pain processing. At the level of the pons, noradrenergic neurons (A5/A7 groups) make up 

the dorsolateral pontine tegmentum (DLPT), which projects mainly to the brainstem and spinal cord and 

modulate autonomic reflexes and pain sensations.  
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Dopaminergic Projections (Figure 3C).  Ascending dopaminergic projections originate in the 

substantia nigra (A9 groups) and ventral tegmental area (A10 groups). Dopaminergic projections from the 

substantia nigra to the striatum (nigrostriatal pathway) are thought to be involved in the initiation of 

motor responses. The mesocortical pathway connects the ventral tegmentum to the frontal lobes and is 

involved in the motivational and emotional response to pain. The mesolimbic pathway extends from the 

ventral tegmental area of the midbrain to areas of the limbic system (nucleus accumbens, amygdala and 

hippocampus) and is involved in reward and pleasure. All three of these ascending dopaminergic 

pathways are involved in the inhibitory function of dopaminergic neurons, with the net effect of 

attenuating nociception, mostly its affective component (Gao et al., 2001). In descending pain pathways, 

dopamine neurons in the posterior dorsal hypothalamus (A11 groups) project to the spinal cord, and play 

an important role in sensory and nociceptive processing and sensory integration (Iversen et al., 2009).  

 Monoamine reuptake inhibitors have clear clinical applications for the treatment of depression, 

and their mechanism of action may also be useful to for the treatment of pain, especially depressant 

effects of pain. These mood and pain-altering effects are thought to occur via enhancement of inhibitory 

monoaminergic neurotransmission in the brain and spinal cord, areas that are heavily involved in pain 

circuitry. 

 

Analgesic Effects of Monoamine Reuptake Inhibitors: Clinical Studies 

 Several studies have investigated the putative antinociceptive and analgesic effects of monoamine 

reuptake inhibitors. Clinical research has shown that monoamine reuptake inhibitors have analgesic 

efficacy in treating chronic inflammatory pain, including fibromyalgia (Gendreau et al., 2005, Mease et 

al., 2009) and arthritis (Lin et al., 2003), and neuropathic pain, including diabetic peripheral neuropathy 

(Rowbotham et al., 2004, Sindrup et al., 2005, Semenchuk et al., 2000) and postherpetic neuralgia 

(Kishore-Kumar et al., 1990, Raja et al., 2002). However, there is limited evidence for their clinical 

efficacy in treating acute pain states (Wallace et al., 2002, Gordon et al., 1994, Dirksen et al., 1998), and 

monoamine reuptake inhibitors are never used to treat acute pain in humans, except for experimental 
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research (Mico et al., 2006).  The analgesic effects of different categories of monoamine reuptake 

inhibitors are described below.  

 

Clinical Chronic Pain Studies with Monoamine Reuptake Inhibitors 

 Selective serotonin reuptake inhibitors (SSRIs) are a class of monoamine reuptake inhibitors 

that specifically inhibit presynaptic reuptake of serotonin, and are associated with few side effects. 

Several published reports indicate that SSRIs have analgesic properties (Jung et al., 1997); however, the 

effects are generally weak. The analgesic effects of SSRIs in pilot, open label studies for the management 

of irritable bowel syndrome symptoms have been mixed (Masand et al., 2002, Masand et al., 2005); 

however, anecdotal reports have suggested benefits in irritable bowel syndrome patients with paroxetine 

(Kirsch et al., 2000), fluvoxamine (Emmanuel et al., 1997), and mirtazapine (Thomas et al., 2000). One of 

the only placebo-controlled studies evaluating an SSRI on visceral perception and irritable bowel 

syndrome symptoms in non-depressed patients reported that fluoxetine administration did not change the 

thresholds for discomfort/pain during phasic rectal distention in irritable bowel syndrome patients, and 

did not affect psychological symptoms evaluated on a self-rated questionnaire (Kuiken et al., 2003). 

Therefore, the observed beneficial effects of SSRIs in clinical practice may depend mainly on its 

psychotropic action, possibly explaining the lack of effect on symptoms in this selected cohort of patients. 

Further studies are needed to clarify the impact of possible concomitant psychiatric disease and possible 

differential effects of SSRIs on objective and subjective pain measures. SSRIs have demonstrated partial 

analgesic efficacy in neuropathic pain patients (Sindrup et al., 1992, Otto et al., 2008). A clinical study 

found that citalopram caused a slight relief of the symptoms of chronic diabetic neuropathy, as measured 

by both observer-and self-rating (Sindrup et al., 1992). Collectively, the limited clinical efficacy of SSRIs 

in chronic pain states and the reliable analgesic effects demonstrated by dual reuptake inhibitors (see 

below) suggests balanced inhibition of both serotonin and norepinephrine reuptake yields the best 

analgesic effects in chronic inflammatory or neuropathic pain conditions.   
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 Currently, little is known about the analgesic effects of selective norepinephrine reuptake 

inhibitors (SNRIs) in chronic pain states. A number of case reports suggest that the SNRI reboxetine may 

provide relief of chronic back pain and fibromyalgia pain before any significant improvement in actual 

mood symptoms (Krell et al., 2005). Further placebo-controlled studies with SNRIs for chronic pain are 

warranted. Related issues of comorbidity of depression and heterogeneity among subtypes of chronic pain 

must be addressed in these studies as well.  

 Similarly, little is known about the analgesic effects of selective dopamine reuptake inhibitors 

(SDRIs) in chronic pain. Studies have reported that bupropion administration significantly decreased pain 

symptoms in patients with chronic low back pain (Semenchuk et al., 2000) peripheral neuropathy (Wolfe 

GI et al., 2004), and migraine headaches (Goodman JF et al., 1997). A recent series of case studies 

reported the utility of low-dose dextroamphetamine in the treatment of chronic pelvic pain related to 

interstitial cystitis and/or chronic idiopathic urticaria (Check et al., 2007, Check et al., 2006, Check et al., 

2005). Other published reports suggest that SDRIs are not effective analgesics alone, but may be useful as 

adjuvant medications to enhance analgesic effects related to opioids and attenuate opioid-induced 

sedation and cognitive deficits (Evans WO et al., 1967, Ivy AC et al., 1944, Forrest WH et al., 1977). 

Psychostimulants have been widely used in the treatment of medically ill patients with fatigue, including 

those with cancer, multiple sclerosis, Parkinson’s disease, opioid-induced sedation, and HIV (Breitbart et 

al., 2001, Holmes et al., 1989, Wagner et al., 2000, Bruera et al., 1989, Sarhill et al., 2001). More clinical 

trials are needed to assess the analgesic effects of SDRIs alone in chronic pain states.  

 By far the most potent and efficacious monoamine reuptake inhibitors available for pain 

management are the class of serotonin-norepinephrine reuptake inhibitors (S+NRIs). Numerous 

clinical studies suggest that dual acting antidepressants with balanced inhibition for both serotonin and 

norepinephrine uptake are more effective than those characterized by a selective activity on one 

monoamine (Fishbain et al., 2000).  It is hypothesized that these drugs are effective in increasing 

serotonergic and noradrenergic neurotransmission, which adequately dampens processing of stimuli in 

pain pathways, leading to substantial pain relief. S+NRIs, as well as many tricyclic antidepressants 
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(TCAs), share a relatively mixed action at SERT and NET.  These two drug classes differ primarily in 

their selectivity for transporters versus other targets such as acetylcholine or histamine receptors. TCAs 

have actions at muscarinic, histaminergic and α-adrenergic receptors (Bomholt et al., 2005), while 

S+NRIs lack affinity at these receptors.  

S+NRIs such as duloxetine, milnacipran and venlafaxine have demonstrated strong analgesic 

efficacy in patients with painful polyneuropathy, fibromyalgia, phantom limb pain and diabetic 

neuropathy (Wernicke et al., 2006, Kajdasz et al., 2007, Sindrup et al., 2003, Sayar et al., 2003, Vitton et 

al., 2004, Arnold et al., 2005, Spiegel et al., 2010, Rowbotham et al., 2004). In the past decade alone, the 

FDA approved duloxetine (Cymbalta) for the treatment of diabetic peripheral neuropathy, fibromyalgia, 

osteoarthritis, and chronic lower back pain. In a large 27-week, randomized, double-blind, placebo-

controlled clinical trial, milnacipran (200 mg/day) significantly reduced pain scores and improved 

physical functioning in patients with fibromyalgia (Mease et al., 2009). Additional studies have reported 

that venlafaxine administration was effective in migraine prophylaxis (Ozyalcin et al., 2005, Nascimento 

et al., 1998) and that duloxetine administration significantly decreased reported pain scores, improved 

quality of life and improved subjective pain measures in patients with Parkinson’s disease (Djaldetti et al., 

2007). These results are consistent with a growing body of literature that multiple symptoms of chronic 

pain conditions, including pain, fatigue, and physical functioning, can be addressed through simultaneous 

augmentation of norepinephrine and serotonin function. Overall, S+NRIs demonstrate clear clinical 

efficacy in the treatment of neuropathic pain, but lack efficacy for the treatment of acute clinical pain (see 

below).  

 Tricyclic antidepressants (TCAs) non-selectively block the re-uptake of serotonin and/or 

norepinephrine and are widely used in the clinical treatment of neuropathic pain (Sindrup and Jensen et 

al., 2000). Today, they are considered the “gold standard” antidepressant for the treatment of persistent 

neuropathic pain (Bryson et al., 1996, Galer et al., 1995). In low back pain, TCAs have been the most 

frequently tested antidepressants, and according to the guidelines of the American Pain Society and 



www.manaraa.com

	  

	  12	  
	  

American College of Physicians, TCAs are clinically effective for pain relief in low back pain (Chou, et 

al., 2007). Clinically, TCAs have demonstrated efficacy in the treatment of chronic pain conditions 

including postherpetic neuralgia (Bowsher et al., 1997, Hempenstall et al., 2005), diabetic neuropathy 

(Max et al., 1987, Gilron et al., 2009), and fibromyalgia (Heymann et al., 2001, Ginsberg et al., 1996). 

Results from a randomized, within-patient, cross-over, placebo-controlled trial clearly indicated a better 

analgesic effect of clomipramine and nortriptyline over placebo in patients with central pain (Panerai et 

al., 1990). The analgesic effects of tricyclic antidepressants are often seen with a faster onset (one to 

seven days) and with third/half the dosage used for depression (Lipman et al. 1996). Studies have also 

confirmed that the actions of tricyclic antidepressants in neuropathic pain are not related to their 

antidepressant effect. Firstly, treatment with tricyclic antidepressants (and in some studies SSRIs) was 

shown to significantly reduce painful symptoms associated with diabetic neuropathy, regardless of 

whether patients had normal or depressed moods (Max et al., 1987, Sindrup et al., 1990). Secondly, 

analgesic effects of antidepressants occur at lower plasma levels than those required for the antidepressant 

action (Sindrup et al., 1990). Despite having an effective analgesic profile clinically, TCAs are associated 

with undesirable side effects due to their actions at multiple receptors, which limits drug compliance in 

chronic pain patients.   

 Very recently, triple monoamine reuptake inhibitors (TRIs) such as bicifadine were 

synthesized to inhibit uptake of serotonin, norepinephrine and dopamine. Elevating supraspinal levels of 

dopamine is proposed to activate mesocorticolimbic dopaminergic pathways, which are central to reward, 

motivation and the experience of pleasure (Wise et al., 2002). This enhanced dopaminergic 

neurotransmission is proposed to address the anhedonia, lack of motivation and lack of attention common 

in pain and depression, which are common symptoms that SSRIs and S+NRIs do not address adequately. 

For example, early studies with treatment-resistant depressed patients found that when an SSRI was 

combined with bupropion, patients had higher and faster rates of remission compared to monotherapy 

(Zisook et al., 2006). Little is known about the clinical efficacy of bicifadine and other novel TRIs. 

Bicifadine has also undergone several Phase II and III trials for the treatment of chronic low back pain 
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(http://clinicaltrials.gov/ct2/show/NCT00295711, http://clinicaltrials.gov/ct2/show/NCT00281645). 

Overall, further clinical investigation is warranted to elucidate the therapeutic potential for TRIs in 

chronic pain states.  

 

Clinical Acute Pain Studies with Monoamine Reuptake Inhibitors 

 Monoamine reuptake inhibitors have also been assessed in patients with acute pain; however, 

their analgesic effects are generally weak. Only limited clinical data exist to suggest that SSRIs 

demonstrate analgesic efficacy in clinical acute pain states. A study in healthy human volunteers 

evaluated the effect of a single oral dose of fluvoxamine on subjective measures of pain induced by the 

application of transcutaneous electrical stimulation to the sural nerve, and found that fluvoxamine 

significantly increased subjective pain thresholds compared to placebo (Coquoz et al., 1993). A caveat to 

this study was that fluvoxamine only altered the subjective pain threshold, without any influence on the 

objective measure of antinociceptive effect: the spinal R-III reflex pain threshold. Clinical studies have 

also demonstrated that fluoxetine (10 mg p.o. daily for 7 days pre-operatively) in combination with the 

mu-opiate morphine or the kappa-opiate pentazocine reduced the overall analgesic duration of action of 

opioids in acute postoperative dental pain patients (Gordon et al., 1994).  

 The clinical literature for analgesic effects of SNRIs in acute pain is also limited. A number of 

studies in acute postoperative pain patients suggest that when given in combination with opioids, SNRIs 

potentiate and prolong the analgesic effects of opioids (Max et al., 1992, Levine et al., 1986, Gordon et 

al., 1993). This literature also suggests that SNRI administration only enhances the analgesic effects of 

postoperative morphine when it is given in the pre-operative week as opposed to post-operative 

administration. There is no clear explanation for these temporal effects; however, it may reflect the 

delayed onset for central effects seen with monoamine reuptake inhibitors. The limited available clinical 

data regarding reboxetine usefulness in pain syndromes (Krell et al., 2005) indicate that SNRIs are mostly 

ineffective in the treatment of acute pain.  Further studies are needed to investigate the noradrenergic 
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component that contributes to endogenous opioid-mediated analgesia and elucidate the efficacy of these 

compounds in subtypes of acute pain.  

 In general, the clinical literature suggests that SDRIs are more useful in reducing fatigue and 

improving symptoms of alertness and energy in postoperative patients, and less useful for blocking 

nociceptive pain (Larijani et al., 2004). The most selective SDRIs, including RTI-113, retain exclusive 

experimental status and are not available clinically. A less selective SDRI, bupropion, has not been 

evaluated clinically for acute pain. However, compounds like methylphenidate and modafinil, which 

inhibit DA and NE, have been evaluated, and generally produce weak analgesic effects. One clinical 

study demonstrated that modafinil failed to produce significant analgesic effects on experimental acute 

pain in normal healthy volunteers (Taneja et al., 2004). This is in contrast to analgesic effects noted in the 

literature for other compounds with a similar clinical profile (Cantello et al., 1988). For example, 

methylphenidate was shown to potentiate the analgesic effects and decrease the sedative effects of 

narcotics for the treatment of cancer pain in a randomized, double-blind, cross-over study (Bruera et al., 

1987). When SDRIs are administered in combination with opioids, they are effective in potentiating the 

analgesic effects of opioids, and decreasing opioid-related somnolence and cognitive impairments in 

postoperative pain patients (Forrest et al., 1977). There are far fewer data demonstrating that SDRI 

administration alone is sufficient to treat acute pain symptoms. An early study reported that amphetamine 

(a DA releaser) had a “pain-threshold-raising” effect on experimentally induced pain (Goetzl et al., 1944). 

However, a later double-blind study found no analgesic effect of psychostimulants in postoperative pain 

patients, besides producing a reduction of sedation up to 30 min after operating (Dodson et al., 1980). 

More clinical trials are needed to elucidate whether SDRIs improve actual pain intensity ratings, in 

addition to improving sedation and cognitive status.  

 There are few clinical data to suggest that S+NRI treatment is effective in blocking acute pain in 

humans. A recent clinical study found that oral venlafaxine administration increased thresholds for pain 

tolerance and pain summation after electrical nerve stimulation, but did not alter pain intensity or 

discomfort experienced during the cold pressor test or increase pressure pain thresholds (Enggaard et al., 
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2001). The impact of venlafaxine on temporal pain summation in this experiment may indicate a potential 

analgesic effect for clinical neuropathic pain, which is supported by recent clinical studies (Tasmuth et al., 

2002, Rowbotham et al., 2004). One clinical study in postoperative knee replacement surgery patients 

found that perioperative administration of duloxetine reduced postoperative morphine requirements 

during the first 48 hours after surgery (Ho et al., 2010). The results from this study suggest that duloxetine 

and other S+NRIs can be useful adjuvants when used with opioids, non-opioids, and regional analgesic 

techniques as part of a multimodal approach in postoperative pain management. 

 Few studies have investigated the analgesic efficacy of TCAs for acute pain. In a dental pain 

study assessing the analgesic efficacy of amitriptyline buccoadhesive tablets, amitriptyline exhibited 

analgesia in all study volunteers (Movassaghian et al., 2011). In a 2002 study, desipramine had no 

significant effect on acute sensory thresholds, pain, secondary hyperalgesia, or flare response induced by 

intradermal capsaicin (Wallace et al., 2002). One criticism of this study was the disproportionate number 

of men and women (nine women and three men). Numerous studies have shown that there are sex 

differences in both pain response and analgesic response (Sarton et al., 2000), which may explain the lack 

of analgesic effect of desipramine on experimental pain. Overall, TCAs produced weak analgesic effects 

in acute pain patients. 

 The analgesic activity of bicifadine and other novel TRIs for acute pain has been evaluated in 

very few placebo-controlled studies. One clinical study evaluated the analgesic efficacy of bicifadine in 

postoperative pain patients and found that 150 mg of bicifadine QD demonstrated significant analgesic 

activity (vs. placebo) (Wang et al., 1982). This study reported minor side effects that did not interfere 

with the course of therapy. Additionally, there are numerous anecdotal reports suggesting that cocaine 

and/or amphetamine produce analgesia (http://www.drugs.com/forum/general/cocaine-pajn-relief-

24448.html, http://www.idmu.co.uk/amphetpain.htm, http://www.drugs-

forum.com/forum/showthread.php?t=24104). Clinical investigations of TRIs regarding dosing and their 

analgesic activity in other pain modalities such as experimental and/or dental pain are warranted.  
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 In summary, monoamine reuptake inhibitors with actions primarily on 5-HT and NE transport 

typically do not alleviate acute pain in humans. However, monoamine reuptake inhibitors with prominent 

actions on DA transport often have more favorable effects on human subjective measures of acute pain.  

 A key feature of the clinical and pre-clinical literature assessing the efficacy of monoamine 

reuptake inhibitors in pain is the glaring discordance of effects in acute pain states. As will be discussed 

further below, monoamine reuptake inhibitors usually demonstrate better antinociceptive effects in pre-

clinical assays of acute pain (pain-stimulated behaviors) than in acute clinical pain (e.g. postoperative 

pain or pain associated with experimental noxious stimuli). Overall, monoamine reuptake inhibitors do 

not produce reliable analgesia against acute pain in humans, but there is a crucial need for more clinical 

studies evaluating monoamine reuptake inhibitors in acute pain states.  

 Taken together, these properties of monoamine reuptake inhibitors suggest that they are useful for 

the treatment of some types of chronic pain and accompanying depressive symptoms. In general, it 

appears that S+NRIs and TCAs provide the best analgesic effects for inflammatory/neuropathic pain 

states, while selective and mixed-action dopamine reuptake inhibitors (SDRIs, N+DRIs, TRIs) may 

relieve subjective feelings of acute pain and be more useful as adjuvants to reduce opioid sedation and 

disease-related fatigue. Further research is warranted to clarify the clinical analgesic properties of these 

compounds.  

 

Antinociceptive Effects of Monoamine Reuptake Inhibitors: Preclinical Studies 

  A number of animal studies involving acute and chronic pain models have concluded that 

antidepressants have an antinociceptive effect or an antihyperalgesic effect.   These effects can vary 

depending on the route of administration (local vs. systemic), dosing schedule (acute vs. chronic) and pain 

model/ stimulus employed.  However, of particular importance for this thesis project, many preclinical 

studies have reported antinociceptive effects of monoamine reuptake inhibitors in assays of acute pain.  

Consequently, there is a discordance in effects of monoamine reuptake inhibitor effects on clinical 

measures of acute pain (usually ineffective) and preclinical studies of acute nociception (often effective).  
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These preclinical findings are described in more detail below for different classes of monoamine reuptake 

inhibitors, and results are summarized in Table 2.  

Acute systemic administration of SSRIs has been shown to produce antinociceptive effects in the 

hotplate assay (Ardid et al., 1992, Fasmer at al., 1989) and in acute visceral inflammatory pain models 

(acetic acid or PPQ-induced abdominal constrictions) (Singh et al., 2001, Leventhal et al., 2007, 

Korzeniewska-Rybicka et al., 1998, Aoki et al., 2006). Additionally, the SSRIs clomipramine and 

fluoxetine both increased tail-withdrawal latencies in rhesus monkeys in a warm water tail-withdrawal 

assay of acute thermal nociception (Gatch et al., 1998). SSRIs have also been reported to attenuate 

nociceptive behaviors in the formalin test (Bomholt et al., 2005, Mochizucki et al., 2004, Otsuka et al., 

2001) and block mechanical allodynia in animals with peripheral nerve injury (Jett et al., 1997, Leventhal 

et al., 2007, Jesse et al., 2010). Reports on the analgesic efficacy of SSRIs in neuropathic pain models are 

mixed, ranging from partial to full pain relief. One preclinical study demonstrated antiallodynic effects of 

paroxetine and fluvoxamine in streptozotocin-induced diabetic rats, but little antiallodynic effect in rats 

with chronic constriction injury (CCI) (Ikeda et al., 2009).  Full antinociception with an SSRI may be 

limited by the occurrence of troublesome side effects. 

 SNRIs including reboxetine, maprotilline and nisoxetine have been assessed in preclinical pain 

assays and have shown the highest efficacy in acute pain models of hotplate, tail flick and writhing assays 

(Rojas-Corrales et al., 2003, Schreiber et al., 2009, Ardid et al., 1992). In one particular study, wild-type 

(WT) mice and littermates with gene knockout (KO) of SERT, NET or both transporters were used to 

investigate the relative contributions of NET and SERT on nociception and the analgesic effects of 

amitriptyline and morphine. In the study, NET KO mice demonstrated profound baseline hypoalgesia in 

the hot plate and tail flick assays across a variety of noxious temperatures, as well as a substantial 

reduction in acetic acid-induced writhing. The effect of NET KO was so great that it impaired the ability 

to subsequently observe amitriptyline and morphine-induced analgesia in these subjects. The authors 

concluded that NET has a far greater role than SERT in determining baseline thermal and visceral 
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nociception in mice, which further emphasizes the importance of noradrenergic neurotransmission in the 

analgesic effects of monoamine reuptake inhibitors (Hall et al., 2011).  

 SDRIs have also demonstrated antinociceptive effects in preclinical assays of acute pain. In 

particular, bupropion administration produced reliable antiallodynic effects in rats with spinal nerve 

ligation (SNL) or chronic constriction injury (CCI) (Pedersen et al., 2005, Jesse et al., 2010). Other drugs 

with prominent dopaminergic effects are discussed below under TRIs. 	  

 S+NRIs have antinociceptive activity in models of visceral pain (Aoki et al., 2006), acute thermal 

nociception such as hot plate (Suarez-Roca et al., 2006), and demonstrate antinociceptive effects in 

formalin- and carrageenan-induced inflammatory pain assays (Yokogawa et al., 2002, Iyengar et al., 

2004, Bardin et al., 2010). For example, milnacipran dose-dependently and significantly reduced the 

number of writhes induced by an injection of acetic acid in male ICR mice (Aoki et al., 2006) and 

reduced the number of cramps observed in the butyrate/colonic distension assay in rats (a model of 

irritable bowel syndrome) (Depoortère et al., 2011). Another study evaluating the analgesic effects of 

monoamine reuptake inhibitors in rats with carrageenan-induced mechanical hypersensitivity and 

inflammation found that pretreatment with venlafaxine significantly reduced or completely abolished 

enhanced sensitivity to mechanical stimuli (i.e. von Frey monofilaments) (Aricioğlu et al., 2005). S+NRIs 

also have been shown to block hypersensitivity associated with mechanical neuropathies (Iyengar et al., 

2004, Shin and Eisenbach et al., 2004, Obata et al., 2005, King et al., 2006, Onal et al., 2007, Takeda et 

al., 2009, Berrocoso et al., 2011), streptozotocin-induced neuropathies (Ikeda et al., 2009) and arthritic 

pain in animal models (Mico et al., 2011). In this latter study, milnacipran was evaluated in polyarthritic 

rats using the Randall-Selitto pressure meter. Arthritis was induced by a single intradermal injection of 

complete Freund’s adjuvant in the tail base. Using the Randall-Selitto model, two levels of pressure were 

applied to both hind paws (a lower one assessing mechanical allodynia and a higher one assessing 

mechanical hyperalgesia). The pain threshold was determined as the force that induced either a paw 

withdrawal or vocalization/struggle. Milnacipran dose-dependently increased the vocalization threshold in 

rats under both low and high pressure levels, indicative of an antinociceptive effect.  
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 Acute peripheral administration of TCAs produces antinociceptive effects in models of acute 

thermal pain (Tura-Tura et al., 1990, Otsuka et al., 2001, Dirksen et al., 1994) as well as antinociceptive 

and anti-edematogenic effects in models of acute (Aoki et al., 2006-acetic acid writhing, Gray et al., 

1998-acetic-acid writhing, Leventhal et al., 2007) and persistent (Hajhashemi et al., 2010- carrageenan 

paw edema, Bianchi et al., 1995-carrageenan paw edema, Heughan et al., 2002-formalin) inflammatory 

pain. Some of these studies suggest that TCAs demonstrate stronger antinociceptive effects in pain 

models employing a chemical stimulus (acetic acid) compared to a thermal stimulus (radiant heat) (Rojas-

Corrales et al., 2003), but further investigation into this mechanism is required.  Peripheral TCAs also 

demonstrated antinociceptive effects in animal models of neuropathic pain (Sawynok et al 1999, 

Mochizucki et al., 2004, Esser et al., 1999, Abdi et al., 1998, Bomholt et al., 2005, Berrocoso et al., 

2011). Centrally administered TCAs have also been shown to produce anti-hyperalgesic effects in acute 

(Korzeniewska-Rybicka et al., 2000) and persistent inflammatory pain models in rats (Sadeghi et al., 

2011, Eisenach et al., 1995). Recently it was demonstrated that local administration of tricyclic 

antidepressants into the paw produce antinociceptive effects in an inflammatory pain assay (formalin test) 

(Oatway et al., 2003) and peripheral anti-hyperalgesic effects in a neuropathic pain model (spinal nerve 

ligation) (Sawynok et al., 1999).  

 Only a few laboratories have examined the antinociceptive effects of novel TRIs. For example, 

pretreatment with cocaine (or amphetamine) produced reliable blockade of abdominal writhing in mice 

(Frussa-Filho et al., 1996). Similarly, in rhesus monkeys, cocaine administration produced weak but 

significant antinociceptive effects in a warm water tail-withdrawal assay, and when given in combination 

with morphine, produced an overall enhancement of morphine analgesia (Gatch et al., 1999). 

Additionally, studies in rodents have found that cocaine produces weak antinociceptive effects when 

administered alone and potentiates the antinociceptive effects of mu agonists (Misra et al., 1987, Shimada 

et al., 1988, Kaupilla and Mercke et al., 1992, Sierra et al., 1992). Administration of the TRI bicifadine 

was reported to demonstrate antinociceptive effects in assays of acute nociceptive pain (i.e. hot plate, tail 

flick) (Basile et al., 2007) and in assays of acute inflammatory pain (i.e. kaolin-induced arthritis model, 
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yeast-inflamed hind paw model, and PPQ-induced abdominal contractions assay. More research is 

required to evaluate the analgesic effects of TRIs in different pain states.  

 In summary, all types of monoamine reuptake inhibitors have demonstrated significant, although 

sometimes weak antinociceptive effects in assays of acute, inflammatory and neuropathic pain.  

 

New Approaches to Preclinical Assessment of Pain and Analgesia 

 The discordance in monoamine reuptake inhibitor efficacy in preclinical models of acute 

nociception and clinical studies of acute pain may be related to weaknesses of the procedures used in 

preclinical research.  Preclinical assays of pain have evolved over the years, but most studies of 

monoamine releasers or other drugs have relied solely on assays measuring “pain-stimulated 

behaviors,” or behaviors that increase in rate, frequency, or intensity in response to the delivery of a 

painful stimulus (Negus et al. 2006, Stevenson et al. 2006). Preclinical assays of pain-stimulated 

behaviors include hot plate, tail flick, acetic acid-induced writhing and formalin-induced paw flinching 

assays, as well as assays that assess thermal or mechanical hypersensitive withdrawal responses 

associated with inflammation or neuropathy. In these assays, antinociception is inferred from a decrease 

in pain-stimulated behaviors. However, there are many disadvantages of relying solely on pain-stimulated 

behaviors to assess candidate analgesics. First, although clinically effective analgesics (e.g. morphine) 

will block pain-stimulated behaviors, expression of these behaviors can also be blocked by drugs that 

produce motor impairment rather than a selective decrease in sensitivity to noxious stimuli (resulting in 

false-positive evidence for analgesia).  More importantly, pain-stimulated behaviors are rarely used 

clinically to diagnose pain or assess analgesic efficacy. It is well documented that pain is also associated 

with the depression of many behaviors (Von Korff et al., 2005), and there is high co-morbidity between 

pain and depression (Bair et al., 2003). Furthermore, the efficacy of monoamine reuptake inhibitors to 

treat depression suggests that these compounds may also be effective in treating the pro-depressant effects 

of pain. Therefore, we have incorporated more clinically relevant pain assays that measure “pain-

depressed behaviors.” These are behaviors that decrease in rate, frequency, or intensity in response to 
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the delivery of a painful stimulus. Some common examples include pain-related decreases in feeding, 

locomotion and expression of positively reinforced operant behavior. In these assays, effective analgesics 

are expected to increase or restore pain-depressed behaviors back to baseline levels. The addition of pain-

depressed assays is useful when evaluating candidate analgesics, because these dissociate true analgesic 

effects from motor depressant effects, and they provide insight into the affective components of pain. 

Using these two complementary types of preclinical pain assays ensures that our experimental assessment 

of pain and analgesic drug efficacy includes dependent measures similar to those used in veterinary and 

human medicine. An optimal profile for an effective analgesic would be a drug that blocks pain-

stimulated behaviors and increases/restores pain-depressed behaviors.  The effects of monoamine 

releasers have not been examined in preclinical assays of pain-depressed behavior. 

 

Objectives of this Study 

 The objective of the present study was to evaluate the antinociceptive properties of a variety of 

monoamine reuptake inhibitors selective for SERT, NET and DAT in complementary assays of acute 

pain-stimulated and pain-depressed behaviors. The rationale for studying acute pain is two-fold. First, this 

study focuses on acute pain as the first step in a larger investigation on effects of monoamine reuptake 

inhibitors and other drugs on behavioral depression associated with acute and chronic pain states. Further 

studies in chronic pain models will be designed in part on the basis of results from these acute pain 

studies. Second, the most salient discrepancies between preclinical and clinical research have occurred in 

studies of acute pain, for which preclinical studies usually demonstrate significant antinociceptive effects 

of monoamine reuptake inhibitors, whereas clinical studies show little or no analgesic efficacy of these 

compounds. Acute assays of pain were used to further elucidate this discrepancy in the literature. For this 

study, intraperitoneal injection of dilute lactic acid (1.8% in a volume of 1 ml/kg) served as an acute 

chemical noxious stimulus, and acid-stimulated stretching and acid-depressed intracranial self-stimulation 

(ICSS) were assessed in rats.  Abdominal stretching is a commonly used dependent measure of 

nociception in assays of pain-stimulated behavior using intraperitoneal administration of acid or other 
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chemical irritants as the noxious stimulus (Negus et al., 2006).   ICSS, by contrast, is commonly used to 

assess changes in motivated behavior and affect in experimental subjects (Carlezon et al., 2007), and it 

can also be used to evaluate effects of noxious stimuli and candidate analgesics (Pereira Do Carmo G et 

al., 2009, Negus et al., 2010). ICSS promotes high levels of stable responding over time and relies on 

brain reward substrates likely to mediate pro-depressant effects of pain. After exposure to an acute 

noxious stimulus (1.8% lactic acid), ICSS responding decreases significantly, and acid-induced 

depression of ICSS can be blocked by clinically effective analgesics including mu opioid receptor 

agonists and NSAIDs (Pereira Do Carmo, et al., 2009, Negus et al., 2012). Based on previous data 

evaluating the antinociceptive effects of monoamine reuptake inhibitors in assays of pain-stimulated 

behavior (Otsuka et al., 2001, Iyengar et al., 2002, Yokogawa et al., 2002, Pedersen et al., 2005, Bomholt 

et al., 2005, Pelissier et al., 2001, Berrocoso et al., 2011), data from cocaine discrimination studies (Cook 

et al., 2001), and data evaluating antidepressant efficacy in the forced swim test (Paul et al., 1990), we 

hypothesized that acute administration of monoamine reuptake inhibitors would exhibit a range of 

antinociceptive effects in assays of acid-stimulated stretching and acid-depressed ICSS.  This hypothesis 

was tested using drugs that selectively inhibit uptake of serotonin (the SSRI citalopram and TCA 

clomipramine), norepinephrine (the SNRI nisoxetine and TCA nortryptiline), dopamine (the SDRIs RTI-

113 and bupropion), both serotonin and norepinephrine (the S+NRI milnacipran) or all three monoamines 

(the TRI RTI-112). Specifically, given clinical evidence that pharmacologic or environmental stimulation 

of dopaminergic systems appears to be more efficacious than stimulation of serotonergic or noradrenergic 

systems for producing analgesia against acute pain, we hypothesized that only the SDRIs RTI-113 and 

bupropion and the TRI RTI-112 would block acid-depressed ICSS (See Table 1 below). We also 

hypothesized that all monoamine reuptake inhibitors would demonstrate antinociceptive effects in the 

assay of acid-stimulated stretching, because reuptake inhibitors of all monoamines have been reported to 

produce significant antinociception in preclinical assays of other pain-stimulated behaviors. Some 

literature suggests that monoamine reuptake inhibitors require chronic administration to effectively treat 

depressive symptoms (Detke et al., 1997). In a separate group of rats, we investigated the effects of 
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repeated administration of the SSRI citalopram in pain-depressed ICSS, using a repeated dosing regimen 

shown to be effective in the forced swim test of antidepressant-like activity (Carlezon et al., 2006)	  
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Methods 

 

Subjects 

A total of 92 male Sprague-Dawley rats (Harlan, Frederick, MD, USA) weighing 297-334 g at the 

time of surgery were used for the studies of lactic acid-induced stretching (n=45) and ICSS (n=47). Rats 

were housed individually and were maintained on a 12-h light/dark cycle with lights on from 6:00 a.m. to 

6:00 p.m. Rats had free access to food and water except during testing. Animal maintenance and research 

were in compliance with National Institutes of Health guidelines on care and use of animal subjects in 

research, and all animal use protocols were approved by the Virginia Commonwealth University 

Institutional Animal Care and Use Committee.  

 

Intracranial Self-Stimulation (ICSS) 

Surgery 

All rats were implanted with a bipolar stainless steel electrode (Plastics One, Roanoke, VA, USA) 

using stereotaxic surgery. Each bipolar electrode consisted of a cathode (0.25 mm in diameter and 

covered with polyamide insulation except at the flattened tip) and an anode (0.125 mm in diameter and 

uninsulated). During surgery, rats were anesthetized with isoflurane gas (2.5–3% in oxygen; Webster 

Veterinary, Phoenix, AZ, USA). The cathode was implanted in the left medial forebrain bundle at the 

level of the lateral hypothalamus (2.8 mm posterior to bregma, 1.7 mm lateral from midsagittal suture, 

and 7.8 mm below dura). The anode was wrapped around one of three skull screws to ground the implant, 

and the skull screws and electrode were affixed to the skull with orthodontic resin. The animals recovered 

for at least seven days post surgery prior to commencing ICSS training.  

 

Apparatus 

ICSS experiments were conducted in sound-attenuating boxes that contained modular acrylic test 

chambers (29.2 x 30.5 x 24.1 cm) equipped with a response lever (4.5 cm wide, extended 2.0 cm through 



www.manaraa.com

	  

	  25	  
	  

the center of one wall, 3 cm off the floor), stimulus lights (three lights colored red, yellow, and green 

positioned 7.6 cm directly above the response lever), a 2-W white house light, and an ICSS stimulator 

(Med Associates, St. Albans, VT, USA). Electrodes were connected to the stimulator via a swivel 

connector (Model SL2C, Plastics One, Roanoke, VA, USA). The stimulator was controlled by a computer 

software program that also controlled all the programming parameters and data collection (Med 

Associates, St. Albans, VT, USA).  

 

Behavioral Procedure 

After initial shaping of lever-press responding, rats were trained under a continuous 

reinforcement schedule of brain stimulation using procedures similar to those described previously 

(Negus et al., 2010a; Negus et al., 2010b).  During initial training sessions lasting 30 to 60 min, the white 

house light was illuminated, and responding produced electrical stimulation under a continuous schedule 

of reinforcement.  Under this schedule, each lever press resulted in the delivery of a 0.5-s train of square-

wave cathodal pulses (0.1-ms pulse duration) and illumination for 0.5-s of the colored stimulus lights over 

the lever.  Responses during the 0.5-s stimulation period did not earn additional stimulation.  Initially, the 

frequency of stimulation was held constant at 126 Hz, and the stimulation intensity for each rat was 

adjusted gradually to the lowest value that would sustain a high rate of ICSS (≥30 stimulations/min).  

Frequency manipulations were then introduced, and the terminal schedule consisted of sequential 10-min 

components.  During each component, a descending series of 10 current frequencies was presented, with a 

60-s trial at each frequency.  The frequency range extended from 158-56 Hz in 0.05 log increments.  Each 

frequency trial began with a 10-s time out, during which the house light was off and responding had no 

scheduled consequences.  During the last 5 s of this time out, 5 non-contingent stimulations were 

delivered once per second at the frequency available during that trial, and the lever lights were 

illuminated during each stimulation.  This non-contingent stimulation was then followed by a 50-s 

“response” period, during which the house light was illuminated, and responding produced electrical 

stimulation under the continuous reinforcement schedule described above.  Training continued with 
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presentation of three sequential components per day, and intensity was again adjusted as necessary until 

rats reliably responded for at least three and no more than 6 trials of all components for at least two 

consecutive days.  In general, rats were trained in groups of 10-14 for each drug.  The first six rats to meet 

training criteria were then advanced to ICSS testing.  As discussed previously (Pereira Do Carmo et al., 

2009; Negus et al., 2010b), the remaining rats from each group were assigned to studies of lactic acid-

induced stretching using methods described below.    

 Once training was completed, ICSS testing began. A test session consisted of six sequential 

components. The first component of each session was considered to be a “warm up” component, and data 

from this component were discarded. Data from the second and third components were used to calculate 

baseline parameters of frequency-rate curves for that session (see “Data analysis”). After the third 

component, rats were taken out of the ICSS chambers, administered drug and placed back into their home 

cages. After the designated pretreatment time elapsed, 1.8% lactic acid or its vehicle (bacteriostatic water) 

was administered IP in a volume of 1 ml/kg, and rats were immediately placed back into their ICSS 

chambers for three test components. This 30 min test session was chosen to match the session length for 

stretching studies (see below), and because our previous studies demonstrated that lactic acid produced 

sustained decrease in ICSS for up to 90 min (Pereira Do Carmo et al. 2009). Eight different monoamine 

reuptake inhibitors were evaluated, and data from the literature on their selectivities for the serotonin 

transporter (SERT), dopamine transporter (DAT) and norepinephrine transporter (NET) are shown in 

Table 1.  Thus, test drugs included the SSRIs citalopram (3.2-32 mg/kg) and clomipramine (3.2-32 

mg/kg), the SNRIs nisoxetine (1-10 mg/kg) and nortriptyline (1-10 mg/kg), the SDRIs RTI-113 (0.32-3.2 

mg/kg) and bupropion (3.2-32 mg/kg), the S+NRI milnacipran (0.32-3.2 mg/kg), and the TRI RTI-112 

(0.1-1 mg/kg). Each monoamine reuptake inhibitor or its vehicle (bacteriostatic water) was administered 

30 min (before lactic acid or its vehicle, except for RTI-113 and RTI-112, which were administered 10 

min before acid or vehicle.  Pretreatment times were based on previously published behavioral studies in 

rats (Paul et al., 1990, Cook et al., 2001, Otsuka et al., 2001, Iyengar et al., 2002, Yokogawa et al., 2002, 

Pedersen et al., 2005, Bomholt et al., 2005, Pelissier et al., 2001, Berrocoso et al., 2011). Test drug doses 
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were delivered in a modified Latin-square order across rats, so that each week, a rat was tested with a 

given dose of test drug in combination with lactic acid vehicle on one test day and with 1.8% lactic acid 

on another test day. Test sessions were typically conducted on Tuesdays and Fridays, and 30-min training 

sessions were conducted on Mondays, Wednesdays, and Thursdays.  

 Repeated dosing with monoamine reuptake inhibitors is sometimes required to demonstrate 

efficacy in preclinical assays of antidepressant-like effects (e.g. the forced-swim test in rats) (Detke et al., 

1997, Vazquez-Palacios et al., 2004, Cryan et al., 2005).  Consequently, the SSRI citalopram was also 

tested using a dosing regimen of repeated treatment shown to be effective in the modified forced-swim 

test of antidepressant-like drug effects (Carlezon et al. 2006). Specifically, at least one week after 

completion of acute dosing, rats were tested with three repeated injections of citalopram (10 mg/kg, i.p.) 

at 23, 19, and 1 h before receiving acid administration and ICSS testing.  

 

Data analysis 

The primary dependent variable was reinforcement rate in stimulations per minute during each 

frequency trial. To normalize these data, raw reinforcement rates from each trial were converted to 

percent maximum control rate (%MCR), with the MCR defined as the mean of the maximal rates 

observed during the second and third “baseline” components for that session. Thus, %MCR values for 

each trial were calculated as (response rate during a frequency trial ÷ maximum control rate) x 100. For 

each ICSS experiment, data from the second and third baseline components were averaged to yield a 

baseline frequency-rate curve, and data from the three test components were averaged to yield a test 

frequency-rate curve. Baseline and test curves were then averaged across rats to yield mean baseline and 

test curves for each manipulation. For statistical analysis, results were compared by two-way analysis of 

variance (ANOVA), with treatment and ICSS frequency as the two factors. A significant ANOVA was 

followed by a Holman-Sidak post hoc test, and the criterion for significance was set at p<0.05.  

 To provide an additional summary of ICSS performance, the total number of stimulations 

obtained at all frequencies was summed for each test component and averaged across the three test 
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components of each experimental session in each rat. Data for total stimulations per component were then 

expressed as a percentage of the baseline number of stimulations per component in each rat and averaged 

across rats.  

 

Assay of lactic acid-stimulated stretching 

Behavioral procedure 

Test sessions were conducted once per week.  Test drugs were administered IP prior to treatment 

with 1.8% lactic acid (IP in a volume of 1 ml/kg).  Immediately after acid injection, rats were placed into 

acrylic test chambers (31.0cm x 20.1cm x 20.0cm) for 30 min observation periods. A stretch was 

operationally defined as a contraction of the abdomen followed by extension of the hind limbs, and the 

number of stretches during the observation period was counted.  Dose effect curves were determined for 

citalopram (3.2-32 mg/kg, 30 min pretreatment), clomipramine (3.2-32 mg/kg, 30 min pretreatment), 

nisoxetine (0.32-3.2 mg/kg, 30 min pretreatment), nortriptyline (0.32-10 mg/kg, 30 min pretreatment), 

RTI-113 (0.32-3.2, 10 min pretreatment), bupropion (3.2-32 mg/kg, 30 min pretreatment), milnacipran 

(0.1-3.2 mg/kg, 30 min pretreatment) and RTI-112 (0.032-1 mg/kg, 10 min pretreatment). Test drugs 

were delivered in a Latin-square order across rats. Each week, a rat was tested with a given drug dose in 

combination with 1.8% lactic acid.  At the conclusion of these acute dosing studies, repeated dosing 

studies were conducted with citalopram (10 mg/kg) administered 23, 19, and 1 h before acid 

administration. 

 
Data Analysis 
 

Test drug effects on lactic acid-stimulated stretching were evaluated by one-way ANOVA. A 

significant ANOVA was followed by the Dunnett’s post hoc test, and the criterion for significance was 

set at p< 0.05. 
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Drugs 

Lactic acid, citalopram HBr, clomipramine HCl, nisoxetine HCl, nortriptyline HCl and bupropion 

HCl were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Milnacipran HCl was purchased 

from Tocris Bioscience (Minneapolis, MN, USA). RTI-113 [3β-(4-chlorophenyl) tropane-2β-carboxylic 

acid phenyl ester hydrochloride] and RTI-112 [3β-(3-methyl-4-chlorophenyl) tropane-2β-carboxylic acid 

methyl ester hydrochloride] were synthesized at Research Triangle Institute and generously provided by 

Dr. Ivy Carroll. All solutions were prepared in sterile water for IP injection.  
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Results 

 

Effects of monoamine uptake inhibitors in the assay of acid-stimulated stretching 

 Across all 45 rats used for studies of acid-stimulated stretching, IP administration of 1.8% lactic 

acid (1.0 ml/kg) after drug vehicle pretreatments elicited a mean±SEM of 21.24 ± 1.39 stretches.  The 

absolute number of stretches elicited by acid alone in each group is shown in the figures (open bars).  

Figure 4 shows that all eight monoamine uptake inhibitors produced a dose-dependent decrease in acid-

stimulated stretching.  Table 3 shows the lowest dose of each compound to significantly decrease 

stretching.    

 

Effects of monoamine uptake inhibitors in the assay of acid-depressed ICSS 

 Acid-induced depression of ICSS.  Figure 5 shows effects of the same noxious stimulus (IP 

injection of 1.8% lactic acid) on ICSS. During each test session, a “baseline” frequency-rate curve was 

determined before experimental treatments to permit determination of the Maximum Control Rate (MCR) 

for that session.  Over the course of the entire study, the mean±SEM MCR was 54.03±0.57 stimulations 

per trial, and MCR values in each group are shown in Table 4. Reinforcement rates during each frequency 

trial of a session were then expressed as a percentage of that session’s MCR, and the average frequency-

rate curve for all studies with drug vehicle + acid vehicle is shown in Fig. 5. Maximum reinforcement 

rates were usually observed at the highest stimulation frequencies (2.15-2.2 log Hz), and responding 

generally decreased in a frequency-dependent manner at lower frequencies. Administration of 1.8% lactic 

acid depressed ICSS, producing a rightward shift in the frequency-rate curve.  Figure 5 also shows 

summary data for the total number of stimulations delivered across all 10 frequencies during each 

component.  The overall mean±SEM baseline number of stimulations per component for all rats in the 

study was 206.13±6.49, and the mean±SEM baseline number of stimulations per component in each 

group is shown in Table 4.  Total ICSS after treatment with drug vehicle + acid vehicle was nearly 
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identical to baseline predrug ICSS, but acid treatment decreased the number of stimulations per 

component.  This acid-induced depression of ICSS provided a measure of pain-related behavioral 

depression, and drugs were evaluated for their ability to block acid-induced depression of ICSS.   

  

Effects of selective serotonin reuptake inhibitors. Figure 6 shows that citalopram and 

clomipramine failed to block acid-induced depression of ICSS, and consequently failed to produce 

antinociception in this assay. When citalopram was administered as a pretreatment to acid vehicle, 

citalopram produced a downward shift in the ICSS frequency-rate curve (Fig. 6A). A low dose of 3.2 

mg/kg citalopram had no effect on ICSS. However, 10 and 32 mg/kg citalopram significantly decreased 

rates of reinforcement at the two highest frequencies (2.15 and 2.2 log Hz). When citalopram was 

administered as a pretreatment to 1.8% lactic acid, it exacerbated acid-induced depression of ICSS (Fig. 

6B) with significant effects by 10 and 32 mg/kg citalopram at the two highest frequencies (2.15-2.2 log 

Hz).  The lowest doses of citalopram and all other drugs to significantly alter ICSS in the absence or 

presence of acid treatment are shown in Table 3.  Overall, acute citalopram produced a depression of 

ICSS whether it was administered before lactic acid vehicle or 1.8% lactic acid (Fig. 6C).  

When clomipramine was administered as a pretreatment to acid vehicle, it produced a downward 

and rightward shift in the ICSS frequency-rate curve (Fig. 6D). All doses of clomipramine (3.2, 10, and 

32 mg/kg) produced significant decrease in ICSS at the highest stimulation frequencies (2.0-2.2 log Hz). 

Similarly, when clomipramine was administered as a pretreatment to 1.8% lactic acid, it exacerbated acid-

induced depression of ICSS. Only the highest dose of clomipramine (32 mg/kg) produced significant 

decreases in rates of reinforcement at the highest frequency (2.2 log Hz) (Fig. 6E). Overall, acute 

clomipramine produced a depression of ICSS whether it was administered before lactic acid vehicle or 

1.8% lactic acid (Fig. 6F). 

Effect of selective norepinephrine reuptake inhibitors.  Figure 7 shows that nisoxetine and 

nortriptyline also failed to block acid-induced depression of ICSS. When nisoxetine was administered as a 

pretreatment to acid vehicle (Fig. 7A), it produced a rightward shift of the frequency rate curve that was 
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significant at all doses tested (1-10 mg/kg) at frequencies ranging from 1.95-2.15 log Hz. As a 

pretreatment to acid, nisoxetine further depressed ICSS responding (Figure 7B). Higher doses of 3.2 and 

10 mg/kg caused significant decreases in ICSS at frequencies of 2.15-2.2 log Hz. Overall, acute 

nisoxetine depressed ICSS responding in the absence or presence of acid (Fig. 7C).  

When nortriptyline was administered as a pretreatment to acid vehicle, it produced a downward 

and rightward shift in the ICSS frequency rate curve (Fig. 7D). All doses of nortriptyline (1, 3.2, 10 

mg/kg) produced a significant decrease in rates of reinforcement at frequencies ranging from 1.9-2.2 log 

Hz. Similarly, when nortriptyline was administered as a pretreatment to lactic acid, it produced a 

downward and rightward shift in the ICSS frequency rate curve (Fig. 7E) with significant decreases at the 

lowest and highest doses (1 and 10mg/kg) at a range of high frequencies (2.05-2.2 log Hz). Overall, acute 

nortriptyline depressed ICSS responding in the absence or presence of acid (Fig. 7F). 

Effect of selective dopamine reuptake inhibitors.  Figure 8 shows that, in contrast to the SSRIs 

and SNRIs, the SDRIs RTI-113 and bupropion dose-dependently and completely blocked acid-induced 

depression of ICSS at or near doses that also facilitated control ICSS in the absence of the noxious acid 

stimulus. When administered as a pretreatment to acid vehicle, RTI-113 produced a dose-dependent 

leftward shift in the ICSS frequency-rate curve (Fig. 8A). A low dose of 0.32 mg/kg RTI-113 had no 

effect on basal ICSS. However, 1 and 3.2 mg/kg RTI-113 dose-dependently increased rates of 

reinforcement, with significant effects at the highest dose tested. Similarly, when administered as a 

pretreatment to 1.8% lactic acid, RTI-113 increased ICSS responding and ameliorated acid-induced 

depression of ICSS (Fig. 8B). Significant increases in ICSS responding were observed after pretreatment 

with 1 and 3.2 mg/kg RTI-113. Overall, acute RTI-113 produced non-selective facilitation of ICSS in the 

absence or presence of acid (Fig. 8C).  

Pretreatment with bupropion also non-selectively increased ICSS responding in the absence (Fig. 

8D) or presence of acid (Fig. 8E). High doses of 10 and 32 mg/kg bupropion significantly increased rates 

of reinforcement under both conditions, and these effects of bupropion are summarized in Fig. 8F. 
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Overall, acute treatment with either SDRI was sufficient to produce non-selective facilitation of ICSS and 

block acid-induced depression of ICSS.  

Effect of mixed-action monoamine uptake inhibitors. Figure 9 shows the effect of the S+NRI 

milnacipran and the TRI RTI-112 on control and acid-depressed ICSS. Pretreatment with milnacipran did 

not affect control ICSS (Fig. 9A). In the presence of lactic acid, milnacipran trended towards a restoration 

of acid-depressed ICSS (Fig. 9B), but this effect did not reach statistical significance. Overall, acute 

administration of milnacipran trended towards a selective blockade of acid-depressed ICSS, but the effect 

did not reach statistical significance (Fig. 9C).  

Effects of the TRI RTI-112 were similar to effects of the SDRIs discussed above.  When RTI-112 

was administered as a pretreatment to acid vehicle, it produced a dose-dependent leftward shift in the 

ICSS frequency-rate curve (Fig. 9D). Significant increases in ICSS responding were observed after 

pretreatment with all doses of RTI-112 at lower frequencies (1.75-1.95 log Hz). When RTI-112 was 

administered as a pretreatment to lactic acid, significant leftward shifts in the frequency-rate curve were 

seen only with 0.32 and 1 mg/kg RTI-112 at the lower range of frequencies (1.75-2.05 log Hz) (Fig. 9E). 

Overall, all acute doses of RTI-112 were sufficient to produce a facilitation in ICSS responding under 

basal conditions, but only the two highest doses of RTI-112 (0.32 and 1 mg/kg) were able to significantly 

block acid-induced depression of ICSS (Fig. 9F).  

 

Effects of repeated citalopram in the assay of lactic acid-depressed ICSS.  Citalopram was re-

tested using a repeated-dosing regimen shown previously to produce antidepressant effects in a forced-

swim test in rats (Carlezon et al. 2006). As with acute administration, repeated citalopram (10 mg/kg x 3 

doses) significantly decreased acid-stimulated stretching. Intraperitoneal administration of 1.8% lactic 

acid (1.0 ml/kg) elicited a mean±SEM of 13.17 ± 2.40 and 5.67±2.09 stretches after treatment with 

citalopram vehicle and repeated citalopram, respectively, and this effect was significant (t(5)=3.16, 

p=0.025). However, when repeated citalopram was administered as a pretreatment to lactic acid in the 
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ICSS procedure, it failed to block acid-induced depression of ICSS (Fig.10).  Thus, as with acute 

citalopram, repeated citalopram produced antinociception in the assay of acid-stimulated stretching but 

not in the assay of acid-depressed ICSS. 
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Discussion 

 

The main finding of this study was that all eight monoamine reuptake inhibitors produced an 

antinociception-like blockade of acid-stimulated stretching, but only compounds with prominent DA 

reuptake inhibition (SDRIs RTI-113 and bupropion and the TRI RTI-112) were able to block acid-

depressed ICSS, although these effects were produced only at doses that also produced an abuse-related 

facilitation of control ICSS. Nonetheless, these findings are consistent with clinical findings that SDRIs 

or TRIs can relieve affective components of acute pain. Selective or mixed-action inhibitors of 5-HT and 

NE failed to block acid-induced depression of ICSS.  These results are consistent with poor efficacy of 

SSRIs, SNRIs and S+NRIs to treat acute pain in humans. These results suggest that assays of pain-

depressed behavior can provide new insights on analgesia-related effects of monoamine uptake inhibitors. 

 

Effects of Monoamine Reuptake Inhibitors in Acid-Stimulated Stretching 

 The effects of the monoamine reuptake inhibitors in the present assay of lactic acid-stimulated 

stretching are consistent with the effects of these compounds reported previously in other assays 

measuring acute pain-stimulated behaviors, including hot plate, tail flick, acid-induced stretching, 

formalin, and mechanical allodynia elicited by carageenan, CFA, or peripheral nerve injury (Leventhal et 

al., 2007, Rojas-Corrales et al., 2003, Ardid et al., 1992, Pedersen et al., 2005, Yokagawa et al., 2002, 

Aoki et al., 2006, Aricioğlu et al., 2005, Heughan et al., 2002, Mochizucki et al., 2004, Frussa-Filho et al., 

1996, Basile et al., 2007).  

 

 

 

Monoamine Reuptake Inhibitor Effects on Control-ICSS 

 We investigated the effects of eight monoamine reuptake inhibitors on ICSS, in the presence and 

in the absence of a noxious stimulus. In the absence of a noxious stimulus, citalopram and clomipramine 
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produced significant decreases in ICSS responding. These findings are consistent with the effects of 

SSRIs reported previously in ICSS (Lee et al., 1998, Katz and Carroll et al., 1977) in which acute 

fluoxetine administration produced elevations in ICSS reward thresholds and decreases in rates of 

responding for ICSS in both mice and rats. Previous investigations examining the interaction of 5-HT on 

the mesolimbic DA system employing ICSS have resulted in a complex picture. Acute administration of 

fluoxetine (Cazala et al., 1980) and the 5-HT precursor 5-hydroxytryptophan (5-HTP) (Bose et al., 1974), 

results in decreases in rates of responding to rewarding brain stimulation, suggesting an inhibitory role for 

serotonin. Similarly, Fletcher and colleagues (Fletcher et al., 1995) reported a lowering of ICSS 

thresholds after producing an inhibition in 5-HT cell firing via injections of the 5-HT1A agonist 8-OH-

DPAT into the median raphe nucleus. However, other studies using fluoxetine have resulted in no change 

(Andreev et al., 1979, Matthews et al., 1996), or increased rates of responding following direct perfusion 

of 5-HT into the brains of rats self-stimulating (Redgrave et al., 1976). However, those studies, which 

measure the rate of response as the dependent variable, may have confounded results due to the inhibitory 

function of 5-HT on locomotor activity and possibly operant responding in rodents (Gerson et al., 1980). 

For example, systemic injections of fluoxetine and 5-HTP (E.L. Rodriguez Echandia et al., 1983) 

decrease rat locomotor activity and various 5-HT agonists have been shown to attenuate the 

hyperlocomotor activity produced by amphetamine (Hollister et al., 1976, Layer et al., 1992). The 

differences in results could also be attributed to the time of pretreatment with fluoxetine. The discrepant 

results reported by Andreev and colleagues, in which fluoxetine failed to produce changes in rate of 

responding in rats, may be due to their procedure of testing the animals 4 h after administration of 

fluoxetine. Through microdialysis it has been shown that acute intraperitoneal injections of fluoxetine 

significantly increase extracellular levels of serotonin in the nucleus accumbens (Guan et al., 1988) and 

the striatum and hippocampus (Kreiss et al., 1995) of rats for approximately 2 hours. Based on these and 

other studies (Otsuka et al., 2001, Iyengar et al., 2002, Yokogawa et al., 2002, Pedersen et al., 2005, 

Bomholt et al., 2005, Pelissier et al., 2001, Berrocoso et al., 2011), we tested our animals 30 min after 

administration of intraperitoneal injections of citalopram and clomipramine for a period of 30 min. Our 
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results in conjunction with published literature further support the hypothesis that serotonin produces an 

inhibitory effect on the mesolimbic dopaminergic reward system. Furthermore, these results suggest that 

the antidepressant effects of fluoxetine are not the direct result of excitation of brain reward systems, at 

least in the same manner as abused substances, like cocaine. It is well established that drugs that lower 

brain stimulation reward thresholds are highly abused, whereas drugs for which there is no abuse potential 

either have no effect or raise the threshold for rewarding brain stimulation (Kornetsky et al., 1990, 

Kornetsky et al., 1979). Our findings in rats, as well as self-administration studies of SSRIs in primates 

(Howell et al., 1995) strongly suggest that SSRIs do not possess abuse potential similar to other drugs of 

abuse such as cocaine (Esposito et al., 1978). 

 Similarly, the SNRIs, nisoxetine and nortriptyline also produced a depression in both control and 

acid-depressed ICSS. To our knowledge, this is the first experiment to evaluate nisoxetine and 

nortriptyline in ICSS. In our study, SNRI-induced depression of control ICSS is consistent with findings 

from other labs assessing the abuse liability of SNRIs. In primates, nisoxetine failed to maintain self-

administration responding (Woolverton et al., 1987), and therefore, did not function as a reinforcer. 

Additionally, a drug discrimination study reported that DAT inhibitors did not substitute for nisoxetine, 

when nisoxetine was trained as the discriminative stimulus (Dekeyne et al., 2001), implying that the 

internal state induced by DA reuptake inhibitors was not similar to the internal state elicited by 

nisoxetine. However, nisoxetine has been shown to substitute for d-amphetamine in mice, pigeons and 

rhesus monkeys trained to discriminate d-amphetamine (Snoddy et al., 1983, Woolverton et al., 1984). 

The failure of DAT inhibitors to generalize to nisoxetine demonstrates that nisoxetine does not have a DA 

component. However, nisoxetine substituting for d-amphetamine suggests that d-amphetamine has a NE 

component. Overall, our study and others suggest that SNRIs may have little or no abuse potential.   

 The SDRIs, RTI-113 and bupropion, as well as the TRI, RTI-112 demonstrated a non-selective 

facilitation in ICSS responding, with or without the presence of a noxious stimulus. Existing evidence 

suggests that DA reuptake inhibitors and cocaine produce an abuse-related facilitation of basal ICSS 

(Kling-Petersen et al., 1994, Tomasiewicz et al., 2008). A strong positive correlation exists between 
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elevated levels of dopamine and enhanced central reward mechanisms of the mesolimbic dopamine 

system that originates in cells of the ventral tegmental area and project to the nucleus accumbens (Koob et 

al., 1992, Kornetsky et al., 1979). Therefore, our results are consistent with previous literature, and further 

support the high abuse liability of SDRIs.  

 The S+NRI milnacipran did not affect control ICSS in our study. In another study, venlafaxine 

administration failed to produce conditioned place preference in rats (Tzschentke et al., 2006), which is 

consistent with the lack of effect of milnacipran in control ICSS. Studies have also demonstrated that 

chronic, but not acute treatment with the tricyclic antidepressant desipramine increased rates of 

responding (Fibiger et al., 1981) and lowered thresholds for rewarding brain stimulation in rats (Valentino 

et al., 1991). Additionally, tricyclic antidepressants selective for NET/SERT, such as desipramine and 

imipramine produce minimal reinforcement in monkey self-administration studies (Gasior et al., 2005).  

 

Effects of monoamine reuptake inhibitors in acid-depressed ICSS 

  These are the first studies to examine effects of monoamine reuptake inhibitors in assays of pain-

depressed behavior. SSRIs, SNRIs and S+NRI failed to produce antinociception in the assay of acid-

depressed ICSS at doses that did produce antinociception in the assay of acid-stimulated stretching.  

Rather, in both assays, these drugs produced a decrease in behavior.  Moreover, these drugs also 

decreased control ICSS in the absence of a noxious stimulus.  These findings suggest that acute 

administration of SSRIs, SNRIs and S+NRIs produce relatively non-selective depression of all behavior 

rather than a selective blockade of sensory sensitivity to noxious stimuli. Conversely, SDRIs and TRIs 

blocked both acid-stimulated stretching and acid-induced depression of ICSS, suggesting that blockade of 

dopamine reuptake may be able to block sensory detection of noxious stimuli. These findings are 

consistent with previous evidence that cocaine and amphetamine produce analgesia in animals and 

humans (Franklin et al., 1999, Yang et al., 1982). Part of the analgesic effect of cocaine can be attributed 

to blockade of sensory nerves, since cocaine can act as a local anesthetic (Bahar et al., 1984), which may 

also explain the analgesic effects of RTI-112 in our study. Reward system activation may offer an 
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alternative explanation for the present antinociceptive results with SDRIs and TRIs. The relationship 

between reward processing and pain relief is supported by prior research showing analgesic benefits from 

pharmacological manipulation of key reward systems (Altier et al., 1998, Taylor et al., 2003, Wood et al., 

2006). In fact, a recent clinical study reported that when patients viewed pictures of romantic partners 

(causing activation of mesolimbic DA brain areas), they experienced reductions in acute pain (Younger et 

al., 2010). However, doses of SDRIs that blocked pain-related behaviors also produced an abuse-related 

facilitation of control ICSS in the absence of the noxious stimulus, suggesting that use of these SDRIs to 

treat pain would be complicated by abuse liability.   

 These results support clinical evidence for efficacy of DAT inhibitors to alleviate the pro-

depressant effects of pain. In general, deployment of SDRIs as analgesics has been limited in part by high 

abuse liability.  However, it may be possible to develop novel dopamine reuptake inhibitors that retain 

analgesic effects but have reduced abuse liability.  For example, bicifadine is a TRI with slightly greater 

potency to block reuptake of 5-HT and NE than DA.  This drug produced antinociception in many 

preclinical assays of pain-stimulated behavior (Basile et al., 2007), but in preclinical assays of abuse 

liability, it produced weaker abuse-related effects than some other TRIs (e.g. cocaine) with more 

prominent DA reuptake effects (Nicholson et al., 2009).  This is consistent with other literature 

suggesting that blockade of serotonergic reuptake can oppose and limit abuse-related effects of DA 

reuptake inhibitors and releasers (Howell et al., 2007, Czoty et al., 2002). Future studies will be required 

to assess the degree to which proportion of DA vs. other monoamine effects might influence efficacy to 

produce antinociception in assays of pain-depressed behavior vs. abuse-related effects. 

 The present results agree with the low clinical utility of 5-HT/NE compounds for treatment of 

acute pain.  These compounds may be more useful for treatment of depressant effects of chronic pain, and 

results from this study will provide a basis for design and interpretation of future studies on chronic pain. 

From a drug development viewpoint, the best pharmacotherapeutic profile for a single effective 

monoamine reuptake inhibitor in the treatment of acute pain is an SDRI (or TRI) that retains analgesic 

effects but is associated with a reduced abuse liability. Bicifadine seems to fit this profile well. For 
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example, bicifadine was associated with weaker stimulus cues, lower rates of motor activation, and lower 

rates of self-administration compared to well-known psychostimulants, cocaine and d-amphetamine, and 

the NET/DAT inhibitor, bupropion in monkeys (Nicholson et al., 2009). This study also demonstrated 

through rat microdialysis that bicifadine-induced elevations in accumbens DA levels were consistently 

lower than either bupropion or d-amphetamine. This low efficacy of bicifadine in elevating accumbens 

DA suggests its weak reinforcing properties are due to the low potency of bicifadine as a  [3H]DA uptake 

inhibitor relative to its ability to inhibit [3H]NE and [3H]5-HT uptake (Basile et al., 2007). Moreover, 

coadministration of drugs that increase 5-HT levels decrease the reinforcing efficacy of cocaine and other 

psychomotor stimulants (Wee et al., 2005, Howell et al., 2007), possibly because of 5-HT-induced 

decreases in DA release in the nucleus accumbens and striatum (Czoty et al., 2002, Fink et al., 2007). 

Thus, future analgesic drug development should target other novel triple reuptake inhibitors that have 

greater potency in blocking 5-HT uptake than DA uptake to minimize abuse potential in pain patients, yet 

retain analgesic effects. 

 

Future directions 

 In future studies, we propose to study drug effects in preclinical assays of chronic, pain-related 

depression of behavior.  We are not sure yet if we can produce chronic behavioral depression with 

conventional assays of chronic inflammatory pain (e.g. models of arthritis) or chronic neuropathic pain 

(e.g. nerve injury models like SNL or CCI).  These assays are under development in our lab. We also 

propose to re-evaluate the effects of the SDRI, RTI-113, in a pain-depressed feeding assay, in an attempt 

to tease apart true antinociceptive effects from a non-selective facilitation in behavior. We predict that 

under control conditions, RTI-113 will not affect feeding in rats. However, under lactic acid conditions, 

RTI-113 will produce a selective restoration of pain-depressed feeding only. Finally, we plan to evaluate 

bicifadine in addition to RTI-112, in acid-stimulated stretching and acid-depressed ICSS because its 

potencies at SERT, NET and DAT are more reflective of a true triple reuptake inhibitor.  
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Table	  2	   Acute	  thermal	  
	  
Hot	  plate	  	  	  	  	  Tail	  Flick	  

Acute	  chemical	  
Acid/PPQ	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Formalin	  
stretching	  	  	  	  	  	  (2nd	  phase	  lick/flinch)	  

Inflammatory	  
Carrageenan	  	  	  	  	  	  	  	  	  	  	  	  	  	  CFA	  
	  	  	  	  	  (mechanical	  allodynia)	  

Neuropathic	  
SNL	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CCI	  
	  	  (mechanical	  allodynia)	  

SSRIs	  
-‐	  Citalopram	  

+t	   -‐a	   +p	   +a	   	   	   	   -‐a	  

-‐	  Fluvoxamine	   	   	   +j	   +d	   	   	   	   -‐f	  
-‐	  Sertraline	   -‐i	   	   	   +i	   +h	   	   	   	  
-‐	  Fluoxetine	   -‐b	   -‐b	   +k	   	   -‐h	   +m	   +r	   -‐f	  
	   	   	   	   	   	   	   	   	  
SNRIs	  
-‐	  Nisoxetine	  

+b	   +b	   	   +u	   	   	   	   	  

-‐	  Reboxetine	   +q	   +s	   +r	   +s	   	   	   +r	   -‐s	  
	   	   	   	   	   	   	   	   	  
SDRIs	  
-‐	  RTI-‐113	  

	   	   	   	   	   	   	   	  

-‐	  Bupropion	   	   	   	   -‐s	   	   	   	   +s	  
	   	   	   	   	   	   	   	   	  
S+NRIs	  
-‐	  Milnacipran	  

	   	   +j	   +d	   	   +o	   +d	   	  

-‐	  Venlafaxine	   	   +s	   	   +s	   +h	   	   +e	   -‐s	  
-‐	  Duloxetine	   +a	   +e	   	   +a	   +h	   +m	   +e	   	  

	   	   	   	   	   	   	   	   	  
TRIs	  
-‐	  RTI-‐112	  

	   	   	   	   	   	   	   	  

-‐	  Bicifadine	   	   +l	   +l	   +l	   	   +l	   +l	   	  
-‐	  Cocaine	   +v	   	   	   +v	   	   	   	   	  
	   	   	   	   	   	   	   	   	  
TCAs	  
-‐	  Clomipramine	  

+c	   -‐c	   +c	   +c	   -‐p	   	   	   	  

-‐	  Imipramine	   +c	   -‐c	   +c	   +c	   	   	   	   +f	  
-‐	  Amitriptyline	   +c	   +c	   +c	   +a	   	   -‐n	   +g	   +	  f	  
-‐	  Desipramine	   +i	   +c	   +c	   +c	   +h	   	   +r	   	  
-‐	  Nortriptyline	   +c	   -‐c	   +c	   +c	   	   	   	   	  

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  Effective	  in	  producing	  antinociceptive	  effect	  in	  assay	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  -‐	  Ineffective	  in	  producing	  antinociceptive	  effect	  in	  assay	  
	  

a	  (Bomholt	  et	  al.,	  2005)	  b	  (Hall	  et	  al.,	  2011)	  c	  (Rojas-‐Corrales	  et	  al.,	  2003)	  d	  (Mochizucki	  et	  al.,	  2004)	  e	  (Iyengar	  et	  al.,	  2004)	  
	  f	  (Garcia	  et	  al.,	  2010)	  g	  (Sung	  et	  al.,	  2004)	  h	  (Jones	  et	  al.,	  2006)	  i	  (Otsuka	  et	  al.,	  2001)	  j	  (Aoki	  et	  al.,	  2006)	  k	  (Singh	  et	  al.,	  2001)	  	  
l	  (Basile	  et	  al.,	  2007)	  m	  (Boyce-‐Rustay	  et	  al.,	  2010)	  n	  (Matson	  et	  al.,	  2007)	  o	  (Mico	  et	  al.,	  2011)	  p	  (Ardid	  et	  al.,	  	  1992)	  
q	  (Schreiber	  et	  al.,	  2009)	  r	  (Leventhal	  et	  al.,	  2007)	  s	  (Pedersen	  et	  al.,	  2005)	  t	  (Fasmer	  et	  al.,	  1989)	  u	  (Yokogawa	  et	  al.,	  2002)	  
v	  (Lin	  et	  al.,	  1989)	  
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             Table 3. Lowest dose of each compound to produce a significant change in acid-stimulated stretching, control ICSS in  
             the absence of the acid noxious stimulus, or acid-depressed ICSS.  The valence of effect is also shown, with downward 
             arrows to indicate a decrease in stretching or ICSS (i) or upward arrows to indicate an increase in ICSS (h). 
 
 
	  

 Acid-Stimulated 

Stretching 

Control ICSS Acid-Depressed ICSS 

Citalopram 32 i 10 i 10 i 

Clomipramine 10 i 3.2 i 32 i 

Nisoxetine 0.32 i 1.0 i 3.2 i 

Nortriptyline 3.2 i 1.0 i 1.0 i 

RTI-113 3.2 i 3.2 h 1.0 h 

Bupropion 10 i 10 h 10 h 

Milnacipran 1.0 i >3.2  >3.2 

RTI-112 0.032 i 0.1 h 0.32 h 
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Table 4. Mean±SEM maximum control response rates (MCR) and total stimulations per component for 
rats used to test each monoamine reuptake inhibitor. 
 

 Group Average 

Maximum Control 

Rate (MCR) 

Group Average 

Total Stimulations 

Per Component 

Citalopram 49.63± 5.69 161.40±24.38 

Clomipramine 53.43±4.61 138.35±39.03 

Nisoxetine 54.58±2.92 158.58±26.28 

Nortriptyline 48.84±3.89 157.48±25.86 

RTI-113 56.10±4.25 271.72±62.74 

Bupropion 54.23±4.18 212.62±30.95 

Milnacipran 61.03±4.99 224.39±36.44 

RTI-112 55.97±4.32 320.99±23.36 
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Figure	  4.	  Effects	  of	  monoamine	  reuptake	  inhibitors	  in	  the	  assay	  of	  acid-‐stimulated	  stretching.	  	  
Abscissae:	  Dose	  in	  mg/kg.	  Ordinates:	  Number	  of	  acid-‐stimulated	  stretches.	  All	  bars	  show	  mean	  data	  
from	  5-‐6	  rats.	  Error	  bars	  show	  SEM	  data.	  Asterisks	  (*)	  indicate	  a	  significant	  difference	  from	  vehicle	  
treatment	  (Dunnett’s	  post	  hoc	  test;	  p<0.05).	  	  All	  monoamine	  uptake	  inhibitors	  decreased	  acid-‐
stimulated	  stretching.	  ANOVA	  results	  are	  as	  follows.	  (A)	  Citalopram	  [F	  (3,15)=	  9.973,	  p=0.0007],	  (B)	  
Clomipramine	  [F	  (3,15)=	  10.60,	  p=0.0005],	  (C)	  Nisoxetine	  [F	  (3,12)=	  28.50,	  p<0.0001],	  (D)	  Nortriptyline	  [F	  
(4,20)=	  6.301,	  p=0.0019],	  (E)	  RTI-‐113	  [F	  (3,15)=	  7.938,	  p=0.0021],	  (F)	  Bupropion	  [F	  (3,15)=	  13.93,	  
p=0.0001],	  (G)	  Milnacipran	  [F	  (4,12)=	  4.071,	  p=0.0260],	  (H)	  RTI-‐112	  [F	  (4,20)=	  7.589,	  p=0.0007].	  
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Figure	  5	  
	  

	  
	  
	  
Figure	  5.	  Acid-‐induced	  depression	  of	  ICSS.	  Left	  panel	  (A)	  compares	  effects	  of	  pretreatment	  with	  Vehicle	  
+	  Vehicle	  and	  Vehicle	  +	  1.8%	  lactic	  acid	  on	  full	  frequency-‐rate	  curves.	  Abscissa:	  Frequency	  of	  electrical	  
brain	  stimulation	  in	  log	  Hz.	  Ordinate:	  Percent	  maximum	  control	  response	  rate	  (%MCR).	  Filled	  symbols	  
indicate	  a	  significant	  difference	  from	  Veh-‐Veh	  (Holm-‐Sidak	  post	  hoc	  test,	  p<0.05).	  Right	  panel	  (B)	  shows	  
summary	  data	  for	  lactic	  acid	  effects	  on	  the	  total	  number	  of	  stimulations	  per	  component	  Abscissa:	  
Concentration	  of	  lactic	  acid.	  Ordinate:	  Percent	  baseline	  number	  of	  stimulations	  per	  component.	  The	  
downward	  arrow	  indicates	  that	  lactic	  acid	  produced	  a	  significant	  decrease	  in	  ICSS	  at	  one	  or	  more	  
frequencies	  in	  the	  full	  frequency-‐rate	  curve.	  Statistical	  results	  for	  two-‐way	  ANOVA	  of	  full	  frequency-‐rate	  
curves	  are	  as	  follows:	  (A)	  Significant	  main	  effect	  of	  frequency	  [F(9,414)=	  238.257,	  p<0.001]	  and	  
treatment	  [F(1,46)=	  224.646,	  p<0.001];	  the	  interaction	  was	  also	  significant	  [F(9,414)=16.634,	  p<0.001].	  	  
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Figure	  6	  
	  
	  
	  	  	  	  

Figure	  6.	  Effects	  of	  citalopram	  (A-‐C)	  and	  clomipramine	  (D-‐F)	  on	  control	  and	  acid-‐depressed	  ICSS.	  Left	  
and	  center	  panels	  show	  drug	  effects	  on	  full	  frequency-‐rate	  curves	  when	  drugs	  were	  administered	  as	  a	  
pretreatment	  to	  vehicle	  (Left	  panels	  A,	  D)	  or	  1.8%	  lactic	  acid	  (center	  panels	  B,	  E).	  Abscissae:	  Frequency	  
of	  electrical	  brain	  stimulation	  in	  log	  Hz.	  Ordinates:	  Percent	  maximum	  control	  response	  rate	  (%MCR).	  
Filled	  symbols	  indicate	  a	  significant	  difference	  from	  Veh-‐Veh	  (A,	  D)	  or	  Veh-‐LA	  (B,	  E)	  (Holm-‐Sidak	  post	  hoc	  
test,	  p<0.05).	  Right	  panels	  (C,F)	  show	  summary	  data	  for	  drug	  effects	  on	  the	  total	  number	  of	  stimulations	  
per	  component	  when	  drugs	  were	  administered	  as	  a	  pretreatment	  to	  vehicle	  (open	  bars)	  or	  acid	  (filled	  
bars).	  Abscissae:	  Dose	  of	  drug	  in	  mg/kg.	  Ordinate:	  Percent	  baseline	  number	  of	  stimulations	  per	  
component.	  	  Upward/downward	  arrows	  indicate	  that	  the	  drug	  dose	  produced	  a	  significant	  
increase/decrease	  in	  ICSS	  at	  one	  or	  more	  frequencies	  in	  the	  full	  frequency-‐rate	  curve.	  	  Statistical	  results	  
for	  two-‐way	  ANOVA	  of	  full	  frequency-‐rate	  curves	  are	  as	  follows:	  (A)	  Significant	  main	  effect	  of	  frequency	  
[F(9,36)=60.71,	  p<0.001]	  and	  dose	  [F(3,12)=3.49,	  p=0.050],	  but	  the	  interaction	  was	  not	  significant	  
[F(27,108)=1.57,	  p=0.054].	  (B)	  Significant	  main	  effect	  of	  frequency	  [F(9,36)=40.84,	  p<0.001]	  but	  not	  dose	  
[F(3,12)=0.7,	  p=0.573];	  the	  interaction	  was	  significant	  [F(27,108)=1.64,	  p=0.040].	  	  (D)	  Significant	  main	  
effect	  of	  frequency	  [F(9,45)=17.94,	  p<.001]	  and	  dose	  [F(3,15)=4.33,	  p=0.022],	  but	  the	  interaction	  was	  
not	  significant	  [F(27,135)=1.51,	  p=0.065].	  (E)	  Significant	  main	  effect	  of	  frequency	  [F(9,45)=17.23,	  
p<0.001]	  but	  not	  of	  dose	  [F(3,15)=1.96,	  p=0.164];	  the	  interaction	  was	  significant	  [F(27,135)=2.04,	  
p=0.004].	  	  
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Figure	  7	  
	  

	  

Figure	  7.	  Effects	  of	  nisoxetine	  (A-‐C)	  and	  nortriptyline	  (D-‐F)	  on	  control	  and	  acid-‐depressed	  ICSS.	  Left	  
and	  center	  panels	  show	  drug	  effects	  on	  full	  frequency-‐rate	  curves	  when	  drugs	  were	  administered	  as	  a	  
pretreatment	  to	  vehicle	  (Left	  panels	  A,	  D)	  or	  1.8%	  lactic	  acid	  (center	  panels	  B,	  E).	  Abscissae:	  Frequency	  
of	  electrical	  brain	  stimulation	  in	  log	  Hz.	  Ordinates:	  Percent	  maximum	  control	  response	  rate	  (%MCR).	  
Filled	  symbols	  indicate	  a	  significant	  difference	  from	  Veh-‐Veh	  (A,	  D)	  or	  Veh-‐LA	  (B,	  E)	  (Holm-‐Sidak	  post	  hoc	  
test,	  p<0.05).	  Right	  panels	  (C,F)	  show	  summary	  data	  for	  drug	  effects	  on	  the	  total	  number	  of	  stimulations	  
per	  component	  when	  drugs	  were	  administered	  as	  a	  pretreatment	  to	  vehicle	  (open	  bars)	  or	  acid	  (filled	  
bars).	  Abscissae:	  Dose	  of	  drug	  in	  mg/kg.	  Ordinate:	  Percent	  baseline	  number	  of	  stimulations	  per	  
component.	  	  Upward/downward	  arrows	  indicate	  that	  the	  drug	  dose	  produced	  a	  significant	  
increase/decrease	  in	  ICSS	  at	  one	  or	  more	  frequencies	  in	  the	  full	  frequency-‐rate	  curve.	  	  Statistical	  results	  
for	  two-‐way	  ANOVA	  of	  full	  frequency-‐rate	  curves	  are	  as	  follows:	  (A)	  Significant	  main	  effect	  of	  frequency	  
[F(9,45)=21.3,	  p<0.001]	  and	  dose	  [F(3,15)=10.18,	  p<0.001];	  the	  interaction	  was	  not	  significant	  
[F(27,135)=0.68,	  p=0.875].	  (B)	  Significant	  main	  effects	  of	  frequency	  [F(9,45)=26.94,	  p<0.001]	  but	  not	  
dose	  [F(3,15)=2.25,	  p=0.124];	  the	  interaction	  was	  significant	  [F(27,135)=2.07,	  p=0.003.	  (D)	  Significant	  
main	  effect	  of	  frequency	  [F(9,45)=51.82,	  p<0.001]	  and	  dose	  [F(3,15)=9.58,	  p<0.001];	  the	  interaction	  was	  
significant	  [F(27,135)=3.27,	  p<0.001].	  (E)	  Significant	  main	  effect	  of	  frequency	  [F(9,45)=87.57,p<0.001]	  
and	  dose	  [F(3,15)=5.79,	  p=0.008];	  the	  interaction	  was	  significant	  [F(27,135)=4.48,	  p<0.001].	  	  
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Figure	  8	  

	  

Figure	  8.	  Effects	  of	  RTI-‐113	  (A-‐C)	  and	  bupropion	  (D-‐F)	  on	  control	  and	  acid-‐depressed	  ICSS.	  	  
Left	  and	  center	  panels	  show	  drug	  effects	  on	  full	  frequency-‐rate	  curves	  when	  drugs	  were	  administered	  as	  
a	  pretreatment	  to	  vehicle	  (Left	  panels	  A,	  D)	  or	  1.8%	  lactic	  acid	  (center	  panels	  B,	  E).	  Abscissae:	  Frequency	  
of	  electrical	  brain	  stimulation	  in	  log	  Hz.	  Ordinates:	  Percent	  maximum	  control	  response	  rate	  (%MCR).	  
Filled	  symbols	  indicate	  a	  significant	  difference	  from	  Veh-‐Veh	  (A,	  D)	  or	  Veh-‐LA	  (B,	  E)	  (Holm-‐Sidak	  post	  hoc	  
test,	  p<0.05).	  Right	  panels	  (C,F)	  show	  summary	  data	  for	  drug	  effects	  on	  the	  total	  number	  of	  stimulations	  
per	  component	  when	  drugs	  were	  administered	  as	  a	  pretreatment	  to	  vehicle	  (open	  bars)	  or	  acid	  (filled	  
bars).	  Abscissae:	  Dose	  of	  drug	  in	  mg/kg.	  Ordinate:	  Percent	  baseline	  number	  of	  stimulations	  per	  
component.	  	  Upward/downward	  arrows	  indicate	  that	  the	  drug	  dose	  produced	  a	  significant	  
increase/decrease	  in	  ICSS	  at	  one	  or	  more	  frequencies	  in	  the	  full	  frequency-‐rate	  curve.	  	  Statistical	  results	  
for	  two-‐way	  ANOVA	  of	  full	  frequency-‐rate	  curves	  are	  as	  follows:	  (A)	  Significant	  main	  effect	  of	  frequency	  
[F(9,45)=14.35,	  p<0.001]	  and	  dose	  [F(3,15)=5.27,	  p=0.011];	  the	  interaction	  was	  significant	  
[F(27,135)=2.27,	  p=0.001].	  (B)	  Significant	  main	  effects	  of	  frequency	  [F(9,45)=16.99,	  p<0.001]	  and	  dose	  
[F(3,15)=10.42,	  p<0.001];	  the	  interaction	  was	  not	  significant	  [F(27,135)=0.69,	  p=0.0871].	  	  	  	  	  	  	  	  	  	  (D)	  
Significant	  main	  effect	  of	  frequency	  [F(9,63)=47.70,	  p<0.001]	  and	  dose	  [F(3,21)=23.04,	  p<0.001];	  the	  
interaction	  was	  significant	  [F(27,189)=4.9,	  p<0.001].	  (E)	  Significant	  main	  effect	  of	  frequency	  
[F(9,63)=54.97,p<0.001]	  and	  dose	  [F(3,21)=11.12,	  p<0.001];	  the	  interaction	  was	  significant	  
[F(27,189)=2.63,	  p<0.001].	  	  
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Figure	  9	  

	  

Figure	  9.	  Effects	  of	  milnacipran	  (A-‐C)	  and	  RTI-‐112	  (D-‐F)	  on	  control	  and	  acid-‐depressed	  ICSS.	  	  
Left	  and	  center	  panels	  show	  drug	  effects	  on	  full	  frequency-‐rate	  curves	  when	  drugs	  were	  administered	  as	  
a	  pretreatment	  to	  vehicle	  (Left	  panels	  A,	  D)	  or	  1.8%	  lactic	  acid	  (center	  panels	  B,	  E).	  Abscissae:	  Frequency	  
of	  electrical	  brain	  stimulation	  in	  log	  Hz.	  Ordinates:	  Percent	  maximum	  control	  response	  rate	  (%MCR).	  
Filled	  symbols	  indicate	  a	  significant	  difference	  from	  Veh-‐Veh	  (A,	  D)	  or	  Veh-‐LA	  (B,	  E)	  (Holm-‐Sidak	  post	  hoc	  
test,	  p<0.05).	  Right	  panels	  (C,F)	  show	  summary	  data	  for	  drug	  effects	  on	  the	  total	  number	  of	  stimulations	  
per	  component	  when	  drugs	  were	  administered	  as	  a	  pretreatment	  to	  vehicle	  (open	  bars)	  or	  acid	  (filled	  
bars).	  Abscissae:	  Dose	  of	  drug	  in	  mg/kg.	  Ordinate:	  Percent	  baseline	  number	  of	  stimulations	  per	  
component.	  	  Upward/downward	  arrows	  indicate	  that	  the	  drug	  dose	  produced	  a	  significant	  
increase/decrease	  in	  ICSS	  at	  one	  or	  more	  frequencies	  in	  the	  full	  frequency-‐rate	  curve.	  	  Statistical	  results	  
for	  two-‐way	  ANOVA	  of	  full	  frequency-‐rate	  curves	  are	  as	  follows:	  (A)	  Significant	  main	  effect	  of	  frequency	  
[F(9,27)=32.231,	  p<0.001],	  but	  not	  of	  dose	  [F(3,9)=0.00693,	  p=0.999];	  the	  interaction	  was	  not	  significant	  
[F(27,81)=0.693,	  p=0.858].	  (B)	  Significant	  main	  effect	  of	  frequency	  [F(9,27)=29.911,	  p<0.001]	  but	  not	  of	  
dose	  [F(3,9)=1.436,	  p=0.296];	  the	  interaction	  was	  not	  significant	  [F(27,81)=0.829,	  p=0.702].	  (D)	  
Significant	  main	  effect	  of	  frequency	  [F(9,45)=27.022,	  p<0.001]	  and	  dose	  [F(3,15)=5.403,	  p=0.010];	  the	  
interaction	  was	  significant	  [F(27,135)=11.075,	  p<0.001].	  (E)	  Significant	  main	  effect	  of	  frequency	  
[F(9,45)=36.328,	  p<0.001]	  and	  dose	  [F(3,15)=12.033,	  p<0.001];	  the	  interaction	  was	  significant	  
[F(27,135)=7.585,	  p<0.001].	  	  
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Figure	  10	  	  

	  
	  
Figure	  10.	  Effects	  of	  repeated	  administration	  of	  citalopram.	  Left	  panel	  (A)	  compares	  effects	  of	  
pretreatment	  with	  Veh	  +	  Veh,	  Veh+	  LA	  and	  repeated	  CIT	  +	  LA	  on	  full	  frequency-‐rate	  curves.	  Abscissa:	  
Frequency	  of	  electrical	  brain	  stimulation	  in	  log	  Hz.	  Ordinate:	  Percent	  maximum	  control	  response	  rate	  
(%MCR).	  Filled	  black	  symbol	  indicates	  a	  significant	  difference	  from	  Veh-‐Veh	  (Holm-‐Sidak	  post	  hoc	  test,	  
p<0.05).	  Right	  panel	  (B)	  shows	  summary	  data	  for	  the	  same	  treatments	  on	  the	  total	  number	  of	  
stimulations	  per	  component.	  Abscissa:	  Treatment.	  Ordinate:	  Percent	  baseline	  number	  of	  stimulations	  
per	  component.	  Downward	  arrows	  indicate	  a	  significant	  decrease	  in	  ICSS	  at	  one	  or	  more	  frequencies	  in	  
the	  full	  frequency-‐rate	  curve	  relative	  to	  Veh+Veh.	  	  
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